Loading…

Doping-Induced Charge Density Wave and Ferromagnetism in the Van der Waals Semiconductor CrSBr

In materials with one-dimensional electronic bands, electron-electron interactions can produce intriguing quantum phenomena, including spin-charge separation and charge density waves (CDW). Most of these systems, however, are non-magnetic, motivating a search for anisotropic materials where the coup...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-12
Main Authors: Feuer, Margalit L, Morgan Thinel, Huang, Xiong, Zhi-Hao Cui, Shao, Yinming, Kundu, Asish K, Chica, Daniel G, Han, Myung-Geun, Pokratath, Rohan, Telford, Evan J, Cox, Jordan, York, Emma, Okuno, Saya, Chun-Ying, Huang, Bukula, Owethu, Nashabeh, Luca M, Qiu, Siyuan, Nuckolls, Colin P, Dean, Cory R, Billinge, Simon J L, Zhu, Xiaoyang, Zhu, Yimei, Basov, Dmitri N, Millis, Andrew J, Reichman, David R, Pasupathy, Abhay N, Roy, Xavier, Ziebel, Michael E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Feuer, Margalit L
Morgan Thinel
Huang, Xiong
Zhi-Hao Cui
Shao, Yinming
Kundu, Asish K
Chica, Daniel G
Han, Myung-Geun
Pokratath, Rohan
Telford, Evan J
Cox, Jordan
York, Emma
Okuno, Saya
Chun-Ying, Huang
Bukula, Owethu
Nashabeh, Luca M
Qiu, Siyuan
Nuckolls, Colin P
Dean, Cory R
Billinge, Simon J L
Zhu, Xiaoyang
Zhu, Yimei
Basov, Dmitri N
Millis, Andrew J
Reichman, David R
Pasupathy, Abhay N
Roy, Xavier
Ziebel, Michael E
description In materials with one-dimensional electronic bands, electron-electron interactions can produce intriguing quantum phenomena, including spin-charge separation and charge density waves (CDW). Most of these systems, however, are non-magnetic, motivating a search for anisotropic materials where the coupling of charge and spin may affect emergent quantum states. Here, electron doping the van der Waals magnetic semiconductor CrSBr induces an electronically driven quasi-1D CDW, which survives above room temperature. Lithium intercalation also increases the magnetic ordering temperature to 200 K and changes its interlayer magnetic coupling from antiferromagnetic to ferromagnetic. The spin-polarized nature of the anisotropic bands that give rise to this CDW enforces an intrinsic coupling of charge and spin. The coexistence and interplay of ferromagnetism and charge modulation in this exfoliatable material provides a promising platform for studying tunable quantum phenomena across a range of temperatures and thicknesses.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3143451590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143451590</sourcerecordid><originalsourceid>FETCH-proquest_journals_31434515903</originalsourceid><addsrcrecordid>eNqNjMsKgkAUQIcgSMp_uNBa0BntsU2TWhe1Swa96UjO2J0x6O8z6ANancU5nAnzuBBRsIk5nzHf2jYMQ75a8yQRHrtlple6Do66GkqsIG0k1QgZaqvcG67yhSB1BTkSmU7WGp2yHSgNrkG4SA0V0pjJh4UTdqo035EzBCmddrRg0_uo0P9xzpb5_pwegp7Mc0DritYMpEdViCgWcRIl21D8V30A15lDMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143451590</pqid></control><display><type>article</type><title>Doping-Induced Charge Density Wave and Ferromagnetism in the Van der Waals Semiconductor CrSBr</title><source>Publicly Available Content (ProQuest)</source><creator>Feuer, Margalit L ; Morgan Thinel ; Huang, Xiong ; Zhi-Hao Cui ; Shao, Yinming ; Kundu, Asish K ; Chica, Daniel G ; Han, Myung-Geun ; Pokratath, Rohan ; Telford, Evan J ; Cox, Jordan ; York, Emma ; Okuno, Saya ; Chun-Ying, Huang ; Bukula, Owethu ; Nashabeh, Luca M ; Qiu, Siyuan ; Nuckolls, Colin P ; Dean, Cory R ; Billinge, Simon J L ; Zhu, Xiaoyang ; Zhu, Yimei ; Basov, Dmitri N ; Millis, Andrew J ; Reichman, David R ; Pasupathy, Abhay N ; Roy, Xavier ; Ziebel, Michael E</creator><creatorcontrib>Feuer, Margalit L ; Morgan Thinel ; Huang, Xiong ; Zhi-Hao Cui ; Shao, Yinming ; Kundu, Asish K ; Chica, Daniel G ; Han, Myung-Geun ; Pokratath, Rohan ; Telford, Evan J ; Cox, Jordan ; York, Emma ; Okuno, Saya ; Chun-Ying, Huang ; Bukula, Owethu ; Nashabeh, Luca M ; Qiu, Siyuan ; Nuckolls, Colin P ; Dean, Cory R ; Billinge, Simon J L ; Zhu, Xiaoyang ; Zhu, Yimei ; Basov, Dmitri N ; Millis, Andrew J ; Reichman, David R ; Pasupathy, Abhay N ; Roy, Xavier ; Ziebel, Michael E</creatorcontrib><description>In materials with one-dimensional electronic bands, electron-electron interactions can produce intriguing quantum phenomena, including spin-charge separation and charge density waves (CDW). Most of these systems, however, are non-magnetic, motivating a search for anisotropic materials where the coupling of charge and spin may affect emergent quantum states. Here, electron doping the van der Waals magnetic semiconductor CrSBr induces an electronically driven quasi-1D CDW, which survives above room temperature. Lithium intercalation also increases the magnetic ordering temperature to 200 K and changes its interlayer magnetic coupling from antiferromagnetic to ferromagnetic. The spin-polarized nature of the anisotropic bands that give rise to this CDW enforces an intrinsic coupling of charge and spin. The coexistence and interplay of ferromagnetism and charge modulation in this exfoliatable material provides a promising platform for studying tunable quantum phenomena across a range of temperatures and thicknesses.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Charge density waves ; Charge materials ; Coupling ; Doping ; Electron spin ; Ferromagnetic materials ; Interlayers ; Lithium ; Magnetic semiconductors ; Quantum phenomena ; Room temperature</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3143451590?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Feuer, Margalit L</creatorcontrib><creatorcontrib>Morgan Thinel</creatorcontrib><creatorcontrib>Huang, Xiong</creatorcontrib><creatorcontrib>Zhi-Hao Cui</creatorcontrib><creatorcontrib>Shao, Yinming</creatorcontrib><creatorcontrib>Kundu, Asish K</creatorcontrib><creatorcontrib>Chica, Daniel G</creatorcontrib><creatorcontrib>Han, Myung-Geun</creatorcontrib><creatorcontrib>Pokratath, Rohan</creatorcontrib><creatorcontrib>Telford, Evan J</creatorcontrib><creatorcontrib>Cox, Jordan</creatorcontrib><creatorcontrib>York, Emma</creatorcontrib><creatorcontrib>Okuno, Saya</creatorcontrib><creatorcontrib>Chun-Ying, Huang</creatorcontrib><creatorcontrib>Bukula, Owethu</creatorcontrib><creatorcontrib>Nashabeh, Luca M</creatorcontrib><creatorcontrib>Qiu, Siyuan</creatorcontrib><creatorcontrib>Nuckolls, Colin P</creatorcontrib><creatorcontrib>Dean, Cory R</creatorcontrib><creatorcontrib>Billinge, Simon J L</creatorcontrib><creatorcontrib>Zhu, Xiaoyang</creatorcontrib><creatorcontrib>Zhu, Yimei</creatorcontrib><creatorcontrib>Basov, Dmitri N</creatorcontrib><creatorcontrib>Millis, Andrew J</creatorcontrib><creatorcontrib>Reichman, David R</creatorcontrib><creatorcontrib>Pasupathy, Abhay N</creatorcontrib><creatorcontrib>Roy, Xavier</creatorcontrib><creatorcontrib>Ziebel, Michael E</creatorcontrib><title>Doping-Induced Charge Density Wave and Ferromagnetism in the Van der Waals Semiconductor CrSBr</title><title>arXiv.org</title><description>In materials with one-dimensional electronic bands, electron-electron interactions can produce intriguing quantum phenomena, including spin-charge separation and charge density waves (CDW). Most of these systems, however, are non-magnetic, motivating a search for anisotropic materials where the coupling of charge and spin may affect emergent quantum states. Here, electron doping the van der Waals magnetic semiconductor CrSBr induces an electronically driven quasi-1D CDW, which survives above room temperature. Lithium intercalation also increases the magnetic ordering temperature to 200 K and changes its interlayer magnetic coupling from antiferromagnetic to ferromagnetic. The spin-polarized nature of the anisotropic bands that give rise to this CDW enforces an intrinsic coupling of charge and spin. The coexistence and interplay of ferromagnetism and charge modulation in this exfoliatable material provides a promising platform for studying tunable quantum phenomena across a range of temperatures and thicknesses.</description><subject>Antiferromagnetism</subject><subject>Charge density waves</subject><subject>Charge materials</subject><subject>Coupling</subject><subject>Doping</subject><subject>Electron spin</subject><subject>Ferromagnetic materials</subject><subject>Interlayers</subject><subject>Lithium</subject><subject>Magnetic semiconductors</subject><subject>Quantum phenomena</subject><subject>Room temperature</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKgkAUQIcgSMp_uNBa0BntsU2TWhe1Swa96UjO2J0x6O8z6ANancU5nAnzuBBRsIk5nzHf2jYMQ75a8yQRHrtlple6Do66GkqsIG0k1QgZaqvcG67yhSB1BTkSmU7WGp2yHSgNrkG4SA0V0pjJh4UTdqo035EzBCmddrRg0_uo0P9xzpb5_pwegp7Mc0DritYMpEdViCgWcRIl21D8V30A15lDMQ</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Feuer, Margalit L</creator><creator>Morgan Thinel</creator><creator>Huang, Xiong</creator><creator>Zhi-Hao Cui</creator><creator>Shao, Yinming</creator><creator>Kundu, Asish K</creator><creator>Chica, Daniel G</creator><creator>Han, Myung-Geun</creator><creator>Pokratath, Rohan</creator><creator>Telford, Evan J</creator><creator>Cox, Jordan</creator><creator>York, Emma</creator><creator>Okuno, Saya</creator><creator>Chun-Ying, Huang</creator><creator>Bukula, Owethu</creator><creator>Nashabeh, Luca M</creator><creator>Qiu, Siyuan</creator><creator>Nuckolls, Colin P</creator><creator>Dean, Cory R</creator><creator>Billinge, Simon J L</creator><creator>Zhu, Xiaoyang</creator><creator>Zhu, Yimei</creator><creator>Basov, Dmitri N</creator><creator>Millis, Andrew J</creator><creator>Reichman, David R</creator><creator>Pasupathy, Abhay N</creator><creator>Roy, Xavier</creator><creator>Ziebel, Michael E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241211</creationdate><title>Doping-Induced Charge Density Wave and Ferromagnetism in the Van der Waals Semiconductor CrSBr</title><author>Feuer, Margalit L ; Morgan Thinel ; Huang, Xiong ; Zhi-Hao Cui ; Shao, Yinming ; Kundu, Asish K ; Chica, Daniel G ; Han, Myung-Geun ; Pokratath, Rohan ; Telford, Evan J ; Cox, Jordan ; York, Emma ; Okuno, Saya ; Chun-Ying, Huang ; Bukula, Owethu ; Nashabeh, Luca M ; Qiu, Siyuan ; Nuckolls, Colin P ; Dean, Cory R ; Billinge, Simon J L ; Zhu, Xiaoyang ; Zhu, Yimei ; Basov, Dmitri N ; Millis, Andrew J ; Reichman, David R ; Pasupathy, Abhay N ; Roy, Xavier ; Ziebel, Michael E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31434515903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferromagnetism</topic><topic>Charge density waves</topic><topic>Charge materials</topic><topic>Coupling</topic><topic>Doping</topic><topic>Electron spin</topic><topic>Ferromagnetic materials</topic><topic>Interlayers</topic><topic>Lithium</topic><topic>Magnetic semiconductors</topic><topic>Quantum phenomena</topic><topic>Room temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Feuer, Margalit L</creatorcontrib><creatorcontrib>Morgan Thinel</creatorcontrib><creatorcontrib>Huang, Xiong</creatorcontrib><creatorcontrib>Zhi-Hao Cui</creatorcontrib><creatorcontrib>Shao, Yinming</creatorcontrib><creatorcontrib>Kundu, Asish K</creatorcontrib><creatorcontrib>Chica, Daniel G</creatorcontrib><creatorcontrib>Han, Myung-Geun</creatorcontrib><creatorcontrib>Pokratath, Rohan</creatorcontrib><creatorcontrib>Telford, Evan J</creatorcontrib><creatorcontrib>Cox, Jordan</creatorcontrib><creatorcontrib>York, Emma</creatorcontrib><creatorcontrib>Okuno, Saya</creatorcontrib><creatorcontrib>Chun-Ying, Huang</creatorcontrib><creatorcontrib>Bukula, Owethu</creatorcontrib><creatorcontrib>Nashabeh, Luca M</creatorcontrib><creatorcontrib>Qiu, Siyuan</creatorcontrib><creatorcontrib>Nuckolls, Colin P</creatorcontrib><creatorcontrib>Dean, Cory R</creatorcontrib><creatorcontrib>Billinge, Simon J L</creatorcontrib><creatorcontrib>Zhu, Xiaoyang</creatorcontrib><creatorcontrib>Zhu, Yimei</creatorcontrib><creatorcontrib>Basov, Dmitri N</creatorcontrib><creatorcontrib>Millis, Andrew J</creatorcontrib><creatorcontrib>Reichman, David R</creatorcontrib><creatorcontrib>Pasupathy, Abhay N</creatorcontrib><creatorcontrib>Roy, Xavier</creatorcontrib><creatorcontrib>Ziebel, Michael E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feuer, Margalit L</au><au>Morgan Thinel</au><au>Huang, Xiong</au><au>Zhi-Hao Cui</au><au>Shao, Yinming</au><au>Kundu, Asish K</au><au>Chica, Daniel G</au><au>Han, Myung-Geun</au><au>Pokratath, Rohan</au><au>Telford, Evan J</au><au>Cox, Jordan</au><au>York, Emma</au><au>Okuno, Saya</au><au>Chun-Ying, Huang</au><au>Bukula, Owethu</au><au>Nashabeh, Luca M</au><au>Qiu, Siyuan</au><au>Nuckolls, Colin P</au><au>Dean, Cory R</au><au>Billinge, Simon J L</au><au>Zhu, Xiaoyang</au><au>Zhu, Yimei</au><au>Basov, Dmitri N</au><au>Millis, Andrew J</au><au>Reichman, David R</au><au>Pasupathy, Abhay N</au><au>Roy, Xavier</au><au>Ziebel, Michael E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Doping-Induced Charge Density Wave and Ferromagnetism in the Van der Waals Semiconductor CrSBr</atitle><jtitle>arXiv.org</jtitle><date>2024-12-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In materials with one-dimensional electronic bands, electron-electron interactions can produce intriguing quantum phenomena, including spin-charge separation and charge density waves (CDW). Most of these systems, however, are non-magnetic, motivating a search for anisotropic materials where the coupling of charge and spin may affect emergent quantum states. Here, electron doping the van der Waals magnetic semiconductor CrSBr induces an electronically driven quasi-1D CDW, which survives above room temperature. Lithium intercalation also increases the magnetic ordering temperature to 200 K and changes its interlayer magnetic coupling from antiferromagnetic to ferromagnetic. The spin-polarized nature of the anisotropic bands that give rise to this CDW enforces an intrinsic coupling of charge and spin. The coexistence and interplay of ferromagnetism and charge modulation in this exfoliatable material provides a promising platform for studying tunable quantum phenomena across a range of temperatures and thicknesses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3143451590
source Publicly Available Content (ProQuest)
subjects Antiferromagnetism
Charge density waves
Charge materials
Coupling
Doping
Electron spin
Ferromagnetic materials
Interlayers
Lithium
Magnetic semiconductors
Quantum phenomena
Room temperature
title Doping-Induced Charge Density Wave and Ferromagnetism in the Van der Waals Semiconductor CrSBr
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Doping-Induced%20Charge%20Density%20Wave%20and%20Ferromagnetism%20in%20the%20Van%20der%20Waals%20Semiconductor%20CrSBr&rft.jtitle=arXiv.org&rft.au=Feuer,%20Margalit%20L&rft.date=2024-12-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3143451590%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31434515903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3143451590&rft_id=info:pmid/&rfr_iscdi=true