Loading…
LIPT: Improving Prompt Tuning with Late Inception Reparameterization
Prompt tuning is a mainstream technique for fine-tuning large language models (LLMs), offering minimal parameter adjustments by learning task-specific prompt vectors. However, it suffers from training costs due to network-wide backpropagation and weaker performance compared to methods like adapters...
Saved in:
Published in: | Electronics (Basel) 2024-12, Vol.13 (23), p.4741 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c196t-2db237906aba5dd3f5a45ff25bfeae0a3bc412bcd6520586b8a9985e2a5688723 |
container_end_page | |
container_issue | 23 |
container_start_page | 4741 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | He, Yawen Feng, Ao Gao, Zhengjie Song, Xinyu |
description | Prompt tuning is a mainstream technique for fine-tuning large language models (LLMs), offering minimal parameter adjustments by learning task-specific prompt vectors. However, it suffers from training costs due to network-wide backpropagation and weaker performance compared to methods like adapters and LoRA, likely due to the limited capacity of soft prompts to encode task-specific information. This study introduces Late Inception Prompt Tuning (LIPT), a novel approach to soft prompt learning that enhances performance and efficiency by shortening backpropagation paths and employing a multidimensional bottleneck network with greater capacity. LIPT surpasses existing prompt tuning techniques on various benchmark tasks, delivering a 1.3% gain over LPT and a 5% improvement compared to standard prompt tuning when applied to RoBERTa-large, while converging more rapidly. It achieves an average accuracy of 90% across ten benchmark datasets. Notably, in certain scenarios, LIPT’s performance approaches that of full-parameter fine-tuning methods. To evaluate parameter-efficient fine-tuning (PEFT) comprehensively, we propose an Efficiency Indicator (EI) that balances accuracy and cost. LIPT is well suited for natural language understanding tasks, like sentiment analysis and text classification, with potential extensions to larger-scale models and tasks like text generation. This framework advances the scalability and practicality of fine-tuning methods for diverse applications. |
doi_str_mv | 10.3390/electronics13234741 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3144086139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819847708</galeid><sourcerecordid>A819847708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-2db237906aba5dd3f5a45ff25bfeae0a3bc412bcd6520586b8a9985e2a5688723</originalsourceid><addsrcrecordid>eNptUE1PwzAMjRBITGO_gEslzh35aNqE2zRgVKrEhMa5SlNnZFqTkmYg-PV0GgcO2AfbT-_Z1kPomuA5YxLfwh50DN5ZPRBGWVZk5AxNKC5kKqmk53_6SzQbhh0eQxImGJ6g-6pcb-6SsuuD_7Bum6yD7_qYbA7uOH3a-JZUKkJSOg19tN4lL9CroDqIEOy3OkJX6MKo_QCz3zpFr48Pm-VTWj2vyuWiSjWReUxp21BWSJyrRvG2ZYarjBtDeWNAAVas0RmhjW5zTjEXeSOUlIIDVTwXoqBsim5Oe8dn3w8wxHrnD8GNJ2tGsgyLnDA5suYn1lbtobbO-BiUHrOFzmrvwNgRXwgiRVYUWIwCdhLo4IchgKn7YDsVvmqC66PF9T8Wsx8w0HGe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144086139</pqid></control><display><type>article</type><title>LIPT: Improving Prompt Tuning with Late Inception Reparameterization</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>He, Yawen ; Feng, Ao ; Gao, Zhengjie ; Song, Xinyu</creator><creatorcontrib>He, Yawen ; Feng, Ao ; Gao, Zhengjie ; Song, Xinyu</creatorcontrib><description>Prompt tuning is a mainstream technique for fine-tuning large language models (LLMs), offering minimal parameter adjustments by learning task-specific prompt vectors. However, it suffers from training costs due to network-wide backpropagation and weaker performance compared to methods like adapters and LoRA, likely due to the limited capacity of soft prompts to encode task-specific information. This study introduces Late Inception Prompt Tuning (LIPT), a novel approach to soft prompt learning that enhances performance and efficiency by shortening backpropagation paths and employing a multidimensional bottleneck network with greater capacity. LIPT surpasses existing prompt tuning techniques on various benchmark tasks, delivering a 1.3% gain over LPT and a 5% improvement compared to standard prompt tuning when applied to RoBERTa-large, while converging more rapidly. It achieves an average accuracy of 90% across ten benchmark datasets. Notably, in certain scenarios, LIPT’s performance approaches that of full-parameter fine-tuning methods. To evaluate parameter-efficient fine-tuning (PEFT) comprehensively, we propose an Efficiency Indicator (EI) that balances accuracy and cost. LIPT is well suited for natural language understanding tasks, like sentiment analysis and text classification, with potential extensions to larger-scale models and tasks like text generation. This framework advances the scalability and practicality of fine-tuning methods for diverse applications.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13234741</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Back propagation ; Benchmarks ; Cognitive tasks ; Convergence ; Efficiency ; Language ; Large language models ; Methods ; Multidimensional methods ; Natural language processing ; Optimization ; Parameters ; Performance evaluation ; Scale models ; Sentiment analysis</subject><ispartof>Electronics (Basel), 2024-12, Vol.13 (23), p.4741</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-2db237906aba5dd3f5a45ff25bfeae0a3bc412bcd6520586b8a9985e2a5688723</cites><orcidid>0000-0001-6231-7810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3144086139/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3144086139?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>He, Yawen</creatorcontrib><creatorcontrib>Feng, Ao</creatorcontrib><creatorcontrib>Gao, Zhengjie</creatorcontrib><creatorcontrib>Song, Xinyu</creatorcontrib><title>LIPT: Improving Prompt Tuning with Late Inception Reparameterization</title><title>Electronics (Basel)</title><description>Prompt tuning is a mainstream technique for fine-tuning large language models (LLMs), offering minimal parameter adjustments by learning task-specific prompt vectors. However, it suffers from training costs due to network-wide backpropagation and weaker performance compared to methods like adapters and LoRA, likely due to the limited capacity of soft prompts to encode task-specific information. This study introduces Late Inception Prompt Tuning (LIPT), a novel approach to soft prompt learning that enhances performance and efficiency by shortening backpropagation paths and employing a multidimensional bottleneck network with greater capacity. LIPT surpasses existing prompt tuning techniques on various benchmark tasks, delivering a 1.3% gain over LPT and a 5% improvement compared to standard prompt tuning when applied to RoBERTa-large, while converging more rapidly. It achieves an average accuracy of 90% across ten benchmark datasets. Notably, in certain scenarios, LIPT’s performance approaches that of full-parameter fine-tuning methods. To evaluate parameter-efficient fine-tuning (PEFT) comprehensively, we propose an Efficiency Indicator (EI) that balances accuracy and cost. LIPT is well suited for natural language understanding tasks, like sentiment analysis and text classification, with potential extensions to larger-scale models and tasks like text generation. This framework advances the scalability and practicality of fine-tuning methods for diverse applications.</description><subject>Back propagation</subject><subject>Benchmarks</subject><subject>Cognitive tasks</subject><subject>Convergence</subject><subject>Efficiency</subject><subject>Language</subject><subject>Large language models</subject><subject>Methods</subject><subject>Multidimensional methods</subject><subject>Natural language processing</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Scale models</subject><subject>Sentiment analysis</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUE1PwzAMjRBITGO_gEslzh35aNqE2zRgVKrEhMa5SlNnZFqTkmYg-PV0GgcO2AfbT-_Z1kPomuA5YxLfwh50DN5ZPRBGWVZk5AxNKC5kKqmk53_6SzQbhh0eQxImGJ6g-6pcb-6SsuuD_7Bum6yD7_qYbA7uOH3a-JZUKkJSOg19tN4lL9CroDqIEOy3OkJX6MKo_QCz3zpFr48Pm-VTWj2vyuWiSjWReUxp21BWSJyrRvG2ZYarjBtDeWNAAVas0RmhjW5zTjEXeSOUlIIDVTwXoqBsim5Oe8dn3w8wxHrnD8GNJ2tGsgyLnDA5suYn1lbtobbO-BiUHrOFzmrvwNgRXwgiRVYUWIwCdhLo4IchgKn7YDsVvmqC66PF9T8Wsx8w0HGe</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>He, Yawen</creator><creator>Feng, Ao</creator><creator>Gao, Zhengjie</creator><creator>Song, Xinyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6231-7810</orcidid></search><sort><creationdate>20241201</creationdate><title>LIPT: Improving Prompt Tuning with Late Inception Reparameterization</title><author>He, Yawen ; Feng, Ao ; Gao, Zhengjie ; Song, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-2db237906aba5dd3f5a45ff25bfeae0a3bc412bcd6520586b8a9985e2a5688723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Back propagation</topic><topic>Benchmarks</topic><topic>Cognitive tasks</topic><topic>Convergence</topic><topic>Efficiency</topic><topic>Language</topic><topic>Large language models</topic><topic>Methods</topic><topic>Multidimensional methods</topic><topic>Natural language processing</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Scale models</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yawen</creatorcontrib><creatorcontrib>Feng, Ao</creatorcontrib><creatorcontrib>Gao, Zhengjie</creatorcontrib><creatorcontrib>Song, Xinyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yawen</au><au>Feng, Ao</au><au>Gao, Zhengjie</au><au>Song, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LIPT: Improving Prompt Tuning with Late Inception Reparameterization</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>13</volume><issue>23</issue><spage>4741</spage><pages>4741-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Prompt tuning is a mainstream technique for fine-tuning large language models (LLMs), offering minimal parameter adjustments by learning task-specific prompt vectors. However, it suffers from training costs due to network-wide backpropagation and weaker performance compared to methods like adapters and LoRA, likely due to the limited capacity of soft prompts to encode task-specific information. This study introduces Late Inception Prompt Tuning (LIPT), a novel approach to soft prompt learning that enhances performance and efficiency by shortening backpropagation paths and employing a multidimensional bottleneck network with greater capacity. LIPT surpasses existing prompt tuning techniques on various benchmark tasks, delivering a 1.3% gain over LPT and a 5% improvement compared to standard prompt tuning when applied to RoBERTa-large, while converging more rapidly. It achieves an average accuracy of 90% across ten benchmark datasets. Notably, in certain scenarios, LIPT’s performance approaches that of full-parameter fine-tuning methods. To evaluate parameter-efficient fine-tuning (PEFT) comprehensively, we propose an Efficiency Indicator (EI) that balances accuracy and cost. LIPT is well suited for natural language understanding tasks, like sentiment analysis and text classification, with potential extensions to larger-scale models and tasks like text generation. This framework advances the scalability and practicality of fine-tuning methods for diverse applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13234741</doi><orcidid>https://orcid.org/0000-0001-6231-7810</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-12, Vol.13 (23), p.4741 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3144086139 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Back propagation Benchmarks Cognitive tasks Convergence Efficiency Language Large language models Methods Multidimensional methods Natural language processing Optimization Parameters Performance evaluation Scale models Sentiment analysis |
title | LIPT: Improving Prompt Tuning with Late Inception Reparameterization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LIPT:%20Improving%20Prompt%20Tuning%20with%20Late%20Inception%20Reparameterization&rft.jtitle=Electronics%20(Basel)&rft.au=He,%20Yawen&rft.date=2024-12-01&rft.volume=13&rft.issue=23&rft.spage=4741&rft.pages=4741-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13234741&rft_dat=%3Cgale_proqu%3EA819847708%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-2db237906aba5dd3f5a45ff25bfeae0a3bc412bcd6520586b8a9985e2a5688723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144086139&rft_id=info:pmid/&rft_galeid=A819847708&rfr_iscdi=true |