Loading…

LIPT: Improving Prompt Tuning with Late Inception Reparameterization

Prompt tuning is a mainstream technique for fine-tuning large language models (LLMs), offering minimal parameter adjustments by learning task-specific prompt vectors. However, it suffers from training costs due to network-wide backpropagation and weaker performance compared to methods like adapters...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-12, Vol.13 (23), p.4741
Main Authors: He, Yawen, Feng, Ao, Gao, Zhengjie, Song, Xinyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c196t-2db237906aba5dd3f5a45ff25bfeae0a3bc412bcd6520586b8a9985e2a5688723
container_end_page
container_issue 23
container_start_page 4741
container_title Electronics (Basel)
container_volume 13
creator He, Yawen
Feng, Ao
Gao, Zhengjie
Song, Xinyu
description Prompt tuning is a mainstream technique for fine-tuning large language models (LLMs), offering minimal parameter adjustments by learning task-specific prompt vectors. However, it suffers from training costs due to network-wide backpropagation and weaker performance compared to methods like adapters and LoRA, likely due to the limited capacity of soft prompts to encode task-specific information. This study introduces Late Inception Prompt Tuning (LIPT), a novel approach to soft prompt learning that enhances performance and efficiency by shortening backpropagation paths and employing a multidimensional bottleneck network with greater capacity. LIPT surpasses existing prompt tuning techniques on various benchmark tasks, delivering a 1.3% gain over LPT and a 5% improvement compared to standard prompt tuning when applied to RoBERTa-large, while converging more rapidly. It achieves an average accuracy of 90% across ten benchmark datasets. Notably, in certain scenarios, LIPT’s performance approaches that of full-parameter fine-tuning methods. To evaluate parameter-efficient fine-tuning (PEFT) comprehensively, we propose an Efficiency Indicator (EI) that balances accuracy and cost. LIPT is well suited for natural language understanding tasks, like sentiment analysis and text classification, with potential extensions to larger-scale models and tasks like text generation. This framework advances the scalability and practicality of fine-tuning methods for diverse applications.
doi_str_mv 10.3390/electronics13234741
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3144086139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819847708</galeid><sourcerecordid>A819847708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-2db237906aba5dd3f5a45ff25bfeae0a3bc412bcd6520586b8a9985e2a5688723</originalsourceid><addsrcrecordid>eNptUE1PwzAMjRBITGO_gEslzh35aNqE2zRgVKrEhMa5SlNnZFqTkmYg-PV0GgcO2AfbT-_Z1kPomuA5YxLfwh50DN5ZPRBGWVZk5AxNKC5kKqmk53_6SzQbhh0eQxImGJ6g-6pcb-6SsuuD_7Bum6yD7_qYbA7uOH3a-JZUKkJSOg19tN4lL9CroDqIEOy3OkJX6MKo_QCz3zpFr48Pm-VTWj2vyuWiSjWReUxp21BWSJyrRvG2ZYarjBtDeWNAAVas0RmhjW5zTjEXeSOUlIIDVTwXoqBsim5Oe8dn3w8wxHrnD8GNJ2tGsgyLnDA5suYn1lbtobbO-BiUHrOFzmrvwNgRXwgiRVYUWIwCdhLo4IchgKn7YDsVvmqC66PF9T8Wsx8w0HGe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144086139</pqid></control><display><type>article</type><title>LIPT: Improving Prompt Tuning with Late Inception Reparameterization</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>He, Yawen ; Feng, Ao ; Gao, Zhengjie ; Song, Xinyu</creator><creatorcontrib>He, Yawen ; Feng, Ao ; Gao, Zhengjie ; Song, Xinyu</creatorcontrib><description>Prompt tuning is a mainstream technique for fine-tuning large language models (LLMs), offering minimal parameter adjustments by learning task-specific prompt vectors. However, it suffers from training costs due to network-wide backpropagation and weaker performance compared to methods like adapters and LoRA, likely due to the limited capacity of soft prompts to encode task-specific information. This study introduces Late Inception Prompt Tuning (LIPT), a novel approach to soft prompt learning that enhances performance and efficiency by shortening backpropagation paths and employing a multidimensional bottleneck network with greater capacity. LIPT surpasses existing prompt tuning techniques on various benchmark tasks, delivering a 1.3% gain over LPT and a 5% improvement compared to standard prompt tuning when applied to RoBERTa-large, while converging more rapidly. It achieves an average accuracy of 90% across ten benchmark datasets. Notably, in certain scenarios, LIPT’s performance approaches that of full-parameter fine-tuning methods. To evaluate parameter-efficient fine-tuning (PEFT) comprehensively, we propose an Efficiency Indicator (EI) that balances accuracy and cost. LIPT is well suited for natural language understanding tasks, like sentiment analysis and text classification, with potential extensions to larger-scale models and tasks like text generation. This framework advances the scalability and practicality of fine-tuning methods for diverse applications.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13234741</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Back propagation ; Benchmarks ; Cognitive tasks ; Convergence ; Efficiency ; Language ; Large language models ; Methods ; Multidimensional methods ; Natural language processing ; Optimization ; Parameters ; Performance evaluation ; Scale models ; Sentiment analysis</subject><ispartof>Electronics (Basel), 2024-12, Vol.13 (23), p.4741</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-2db237906aba5dd3f5a45ff25bfeae0a3bc412bcd6520586b8a9985e2a5688723</cites><orcidid>0000-0001-6231-7810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3144086139/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3144086139?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>He, Yawen</creatorcontrib><creatorcontrib>Feng, Ao</creatorcontrib><creatorcontrib>Gao, Zhengjie</creatorcontrib><creatorcontrib>Song, Xinyu</creatorcontrib><title>LIPT: Improving Prompt Tuning with Late Inception Reparameterization</title><title>Electronics (Basel)</title><description>Prompt tuning is a mainstream technique for fine-tuning large language models (LLMs), offering minimal parameter adjustments by learning task-specific prompt vectors. However, it suffers from training costs due to network-wide backpropagation and weaker performance compared to methods like adapters and LoRA, likely due to the limited capacity of soft prompts to encode task-specific information. This study introduces Late Inception Prompt Tuning (LIPT), a novel approach to soft prompt learning that enhances performance and efficiency by shortening backpropagation paths and employing a multidimensional bottleneck network with greater capacity. LIPT surpasses existing prompt tuning techniques on various benchmark tasks, delivering a 1.3% gain over LPT and a 5% improvement compared to standard prompt tuning when applied to RoBERTa-large, while converging more rapidly. It achieves an average accuracy of 90% across ten benchmark datasets. Notably, in certain scenarios, LIPT’s performance approaches that of full-parameter fine-tuning methods. To evaluate parameter-efficient fine-tuning (PEFT) comprehensively, we propose an Efficiency Indicator (EI) that balances accuracy and cost. LIPT is well suited for natural language understanding tasks, like sentiment analysis and text classification, with potential extensions to larger-scale models and tasks like text generation. This framework advances the scalability and practicality of fine-tuning methods for diverse applications.</description><subject>Back propagation</subject><subject>Benchmarks</subject><subject>Cognitive tasks</subject><subject>Convergence</subject><subject>Efficiency</subject><subject>Language</subject><subject>Large language models</subject><subject>Methods</subject><subject>Multidimensional methods</subject><subject>Natural language processing</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Scale models</subject><subject>Sentiment analysis</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUE1PwzAMjRBITGO_gEslzh35aNqE2zRgVKrEhMa5SlNnZFqTkmYg-PV0GgcO2AfbT-_Z1kPomuA5YxLfwh50DN5ZPRBGWVZk5AxNKC5kKqmk53_6SzQbhh0eQxImGJ6g-6pcb-6SsuuD_7Bum6yD7_qYbA7uOH3a-JZUKkJSOg19tN4lL9CroDqIEOy3OkJX6MKo_QCz3zpFr48Pm-VTWj2vyuWiSjWReUxp21BWSJyrRvG2ZYarjBtDeWNAAVas0RmhjW5zTjEXeSOUlIIDVTwXoqBsim5Oe8dn3w8wxHrnD8GNJ2tGsgyLnDA5suYn1lbtobbO-BiUHrOFzmrvwNgRXwgiRVYUWIwCdhLo4IchgKn7YDsVvmqC66PF9T8Wsx8w0HGe</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>He, Yawen</creator><creator>Feng, Ao</creator><creator>Gao, Zhengjie</creator><creator>Song, Xinyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6231-7810</orcidid></search><sort><creationdate>20241201</creationdate><title>LIPT: Improving Prompt Tuning with Late Inception Reparameterization</title><author>He, Yawen ; Feng, Ao ; Gao, Zhengjie ; Song, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-2db237906aba5dd3f5a45ff25bfeae0a3bc412bcd6520586b8a9985e2a5688723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Back propagation</topic><topic>Benchmarks</topic><topic>Cognitive tasks</topic><topic>Convergence</topic><topic>Efficiency</topic><topic>Language</topic><topic>Large language models</topic><topic>Methods</topic><topic>Multidimensional methods</topic><topic>Natural language processing</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Scale models</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yawen</creatorcontrib><creatorcontrib>Feng, Ao</creatorcontrib><creatorcontrib>Gao, Zhengjie</creatorcontrib><creatorcontrib>Song, Xinyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yawen</au><au>Feng, Ao</au><au>Gao, Zhengjie</au><au>Song, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LIPT: Improving Prompt Tuning with Late Inception Reparameterization</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>13</volume><issue>23</issue><spage>4741</spage><pages>4741-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Prompt tuning is a mainstream technique for fine-tuning large language models (LLMs), offering minimal parameter adjustments by learning task-specific prompt vectors. However, it suffers from training costs due to network-wide backpropagation and weaker performance compared to methods like adapters and LoRA, likely due to the limited capacity of soft prompts to encode task-specific information. This study introduces Late Inception Prompt Tuning (LIPT), a novel approach to soft prompt learning that enhances performance and efficiency by shortening backpropagation paths and employing a multidimensional bottleneck network with greater capacity. LIPT surpasses existing prompt tuning techniques on various benchmark tasks, delivering a 1.3% gain over LPT and a 5% improvement compared to standard prompt tuning when applied to RoBERTa-large, while converging more rapidly. It achieves an average accuracy of 90% across ten benchmark datasets. Notably, in certain scenarios, LIPT’s performance approaches that of full-parameter fine-tuning methods. To evaluate parameter-efficient fine-tuning (PEFT) comprehensively, we propose an Efficiency Indicator (EI) that balances accuracy and cost. LIPT is well suited for natural language understanding tasks, like sentiment analysis and text classification, with potential extensions to larger-scale models and tasks like text generation. This framework advances the scalability and practicality of fine-tuning methods for diverse applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13234741</doi><orcidid>https://orcid.org/0000-0001-6231-7810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-12, Vol.13 (23), p.4741
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3144086139
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Back propagation
Benchmarks
Cognitive tasks
Convergence
Efficiency
Language
Large language models
Methods
Multidimensional methods
Natural language processing
Optimization
Parameters
Performance evaluation
Scale models
Sentiment analysis
title LIPT: Improving Prompt Tuning with Late Inception Reparameterization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LIPT:%20Improving%20Prompt%20Tuning%20with%20Late%20Inception%20Reparameterization&rft.jtitle=Electronics%20(Basel)&rft.au=He,%20Yawen&rft.date=2024-12-01&rft.volume=13&rft.issue=23&rft.spage=4741&rft.pages=4741-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13234741&rft_dat=%3Cgale_proqu%3EA819847708%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-2db237906aba5dd3f5a45ff25bfeae0a3bc412bcd6520586b8a9985e2a5688723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144086139&rft_id=info:pmid/&rft_galeid=A819847708&rfr_iscdi=true