Loading…

Quality Guided Metric Learning for Domain Adaptation Person Re-Identification

Person re-identification is the task of identifying pedestrians across different cameras. Domain adaptation person re-identification involves transferring knowledge from labeled source domains to unlabeled target domains, with applications in security and surveillance. Challenges emerge due to varia...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on consumer electronics 2024-08, Vol.70 (3), p.6023-6030
Main Authors: Zhang, Lei, Li, Haisheng, Liu, Ruijun, Wang, Xiaochuan, Wu, Xiaoqun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-27f8ff7a4f77db267014b758a71e6547f56132220fbf3a3aca09c92c9a441b733
container_end_page 6030
container_issue 3
container_start_page 6023
container_title IEEE transactions on consumer electronics
container_volume 70
creator Zhang, Lei
Li, Haisheng
Liu, Ruijun
Wang, Xiaochuan
Wu, Xiaoqun
description Person re-identification is the task of identifying pedestrians across different cameras. Domain adaptation person re-identification involves transferring knowledge from labeled source domains to unlabeled target domains, with applications in security and surveillance. Challenges emerge due to variations in sample quality and disparities in distance distribution between positive and negative sample pairs. To address these challenges, this paper proposes a quality guided metric learning approach for domain adaptation person re-identification. We focus on improving appearance similarity metrics by evaluating sample quality based on local visibility, categorizing images as high or low quality. Besides, we introduce an adaptive weight triplet loss incorporating camera information to optimize triplets. This reduces the effects of invalid triplets and facilitating ongoing target domain learning.We have conducted comprehensive comparative evaluations to showcase the advantages and superiority of our proposed method. Our method has 2.6%, 1.9%, and 6.2% improved on Market-1501, DukeMTMC-reID, and MSMT17 datasets, respectively.
doi_str_mv 10.1109/TCE.2024.3386657
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3144172260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10495337</ieee_id><sourcerecordid>3144172260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-27f8ff7a4f77db267014b758a71e6547f56132220fbf3a3aca09c92c9a441b733</originalsourceid><addsrcrecordid>eNpNkDtPwzAURi0EEqWwMzBYYk7x28lYlVIqpeKhMluOYyNXbVJsZ-i_x6UdmL7hnu_eqwPAPUYTjFH1tJ7NJwQRNqG0FILLCzDCnJcFw0ReghFCVVlQJOg1uIlxgxBmnJQjsPoY9NanA1wMvrUtXNkUvIG11aHz3Td0fYDP_U77Dk5bvU86-b6D7zbEHJ-2WLa2S9558ze4BVdOb6O9O-cYfL3M17PXon5bLGfTujCE8VQQ6UrnpGZOyrYhQuZvGslLLbEVnEnHBaaEEOQaRzXVRqPKVMRUmjHcSErH4PG0dx_6n8HGpDb9ELp8UlGcGUmIQJlCJ8qEPsZgndoHv9PhoDBSR2kqS1NHaeosLVceThVvrf2Hs4pTKukvpuxnKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144172260</pqid></control><display><type>article</type><title>Quality Guided Metric Learning for Domain Adaptation Person Re-Identification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Lei ; Li, Haisheng ; Liu, Ruijun ; Wang, Xiaochuan ; Wu, Xiaoqun</creator><creatorcontrib>Zhang, Lei ; Li, Haisheng ; Liu, Ruijun ; Wang, Xiaochuan ; Wu, Xiaoqun</creatorcontrib><description>Person re-identification is the task of identifying pedestrians across different cameras. Domain adaptation person re-identification involves transferring knowledge from labeled source domains to unlabeled target domains, with applications in security and surveillance. Challenges emerge due to variations in sample quality and disparities in distance distribution between positive and negative sample pairs. To address these challenges, this paper proposes a quality guided metric learning approach for domain adaptation person re-identification. We focus on improving appearance similarity metrics by evaluating sample quality based on local visibility, categorizing images as high or low quality. Besides, we introduce an adaptive weight triplet loss incorporating camera information to optimize triplets. This reduces the effects of invalid triplets and facilitating ongoing target domain learning.We have conducted comprehensive comparative evaluations to showcase the advantages and superiority of our proposed method. Our method has 2.6%, 1.9%, and 6.2% improved on Market-1501, DukeMTMC-reID, and MSMT17 datasets, respectively.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3386657</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Adaptive sampling ; adaptive weight ; Cameras ; Data models ; Image quality ; Learning ; metric learning ; Noise ; Pedestrians ; Person Re-identification ; quality constraint ; Surveillance ; Training ; triplet loss</subject><ispartof>IEEE transactions on consumer electronics, 2024-08, Vol.70 (3), p.6023-6030</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-27f8ff7a4f77db267014b758a71e6547f56132220fbf3a3aca09c92c9a441b733</cites><orcidid>0000-0001-6977-6876 ; 0000-0003-3689-6868 ; 0000-0003-4861-0513 ; 0000-0003-4871-8989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10495337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Li, Haisheng</creatorcontrib><creatorcontrib>Liu, Ruijun</creatorcontrib><creatorcontrib>Wang, Xiaochuan</creatorcontrib><creatorcontrib>Wu, Xiaoqun</creatorcontrib><title>Quality Guided Metric Learning for Domain Adaptation Person Re-Identification</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Person re-identification is the task of identifying pedestrians across different cameras. Domain adaptation person re-identification involves transferring knowledge from labeled source domains to unlabeled target domains, with applications in security and surveillance. Challenges emerge due to variations in sample quality and disparities in distance distribution between positive and negative sample pairs. To address these challenges, this paper proposes a quality guided metric learning approach for domain adaptation person re-identification. We focus on improving appearance similarity metrics by evaluating sample quality based on local visibility, categorizing images as high or low quality. Besides, we introduce an adaptive weight triplet loss incorporating camera information to optimize triplets. This reduces the effects of invalid triplets and facilitating ongoing target domain learning.We have conducted comprehensive comparative evaluations to showcase the advantages and superiority of our proposed method. Our method has 2.6%, 1.9%, and 6.2% improved on Market-1501, DukeMTMC-reID, and MSMT17 datasets, respectively.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Adaptive sampling</subject><subject>adaptive weight</subject><subject>Cameras</subject><subject>Data models</subject><subject>Image quality</subject><subject>Learning</subject><subject>metric learning</subject><subject>Noise</subject><subject>Pedestrians</subject><subject>Person Re-identification</subject><subject>quality constraint</subject><subject>Surveillance</subject><subject>Training</subject><subject>triplet loss</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAURi0EEqWwMzBYYk7x28lYlVIqpeKhMluOYyNXbVJsZ-i_x6UdmL7hnu_eqwPAPUYTjFH1tJ7NJwQRNqG0FILLCzDCnJcFw0ReghFCVVlQJOg1uIlxgxBmnJQjsPoY9NanA1wMvrUtXNkUvIG11aHz3Td0fYDP_U77Dk5bvU86-b6D7zbEHJ-2WLa2S9558ze4BVdOb6O9O-cYfL3M17PXon5bLGfTujCE8VQQ6UrnpGZOyrYhQuZvGslLLbEVnEnHBaaEEOQaRzXVRqPKVMRUmjHcSErH4PG0dx_6n8HGpDb9ELp8UlGcGUmIQJlCJ8qEPsZgndoHv9PhoDBSR2kqS1NHaeosLVceThVvrf2Hs4pTKukvpuxnKw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Lei</creator><creator>Li, Haisheng</creator><creator>Liu, Ruijun</creator><creator>Wang, Xiaochuan</creator><creator>Wu, Xiaoqun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6977-6876</orcidid><orcidid>https://orcid.org/0000-0003-3689-6868</orcidid><orcidid>https://orcid.org/0000-0003-4861-0513</orcidid><orcidid>https://orcid.org/0000-0003-4871-8989</orcidid></search><sort><creationdate>20240801</creationdate><title>Quality Guided Metric Learning for Domain Adaptation Person Re-Identification</title><author>Zhang, Lei ; Li, Haisheng ; Liu, Ruijun ; Wang, Xiaochuan ; Wu, Xiaoqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-27f8ff7a4f77db267014b758a71e6547f56132220fbf3a3aca09c92c9a441b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Adaptive sampling</topic><topic>adaptive weight</topic><topic>Cameras</topic><topic>Data models</topic><topic>Image quality</topic><topic>Learning</topic><topic>metric learning</topic><topic>Noise</topic><topic>Pedestrians</topic><topic>Person Re-identification</topic><topic>quality constraint</topic><topic>Surveillance</topic><topic>Training</topic><topic>triplet loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Li, Haisheng</creatorcontrib><creatorcontrib>Liu, Ruijun</creatorcontrib><creatorcontrib>Wang, Xiaochuan</creatorcontrib><creatorcontrib>Wu, Xiaoqun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lei</au><au>Li, Haisheng</au><au>Liu, Ruijun</au><au>Wang, Xiaochuan</au><au>Wu, Xiaoqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality Guided Metric Learning for Domain Adaptation Person Re-Identification</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>70</volume><issue>3</issue><spage>6023</spage><epage>6030</epage><pages>6023-6030</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Person re-identification is the task of identifying pedestrians across different cameras. Domain adaptation person re-identification involves transferring knowledge from labeled source domains to unlabeled target domains, with applications in security and surveillance. Challenges emerge due to variations in sample quality and disparities in distance distribution between positive and negative sample pairs. To address these challenges, this paper proposes a quality guided metric learning approach for domain adaptation person re-identification. We focus on improving appearance similarity metrics by evaluating sample quality based on local visibility, categorizing images as high or low quality. Besides, we introduce an adaptive weight triplet loss incorporating camera information to optimize triplets. This reduces the effects of invalid triplets and facilitating ongoing target domain learning.We have conducted comprehensive comparative evaluations to showcase the advantages and superiority of our proposed method. Our method has 2.6%, 1.9%, and 6.2% improved on Market-1501, DukeMTMC-reID, and MSMT17 datasets, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3386657</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6977-6876</orcidid><orcidid>https://orcid.org/0000-0003-3689-6868</orcidid><orcidid>https://orcid.org/0000-0003-4861-0513</orcidid><orcidid>https://orcid.org/0000-0003-4871-8989</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024-08, Vol.70 (3), p.6023-6030
issn 0098-3063
1558-4127
language eng
recordid cdi_proquest_journals_3144172260
source IEEE Electronic Library (IEL) Journals
subjects Adaptation
Adaptation models
Adaptive sampling
adaptive weight
Cameras
Data models
Image quality
Learning
metric learning
Noise
Pedestrians
Person Re-identification
quality constraint
Surveillance
Training
triplet loss
title Quality Guided Metric Learning for Domain Adaptation Person Re-Identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality%20Guided%20Metric%20Learning%20for%20Domain%20Adaptation%20Person%20Re-Identification&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Zhang,%20Lei&rft.date=2024-08-01&rft.volume=70&rft.issue=3&rft.spage=6023&rft.epage=6030&rft.pages=6023-6030&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3386657&rft_dat=%3Cproquest_ieee_%3E3144172260%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-27f8ff7a4f77db267014b758a71e6547f56132220fbf3a3aca09c92c9a441b733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144172260&rft_id=info:pmid/&rft_ieee_id=10495337&rfr_iscdi=true