Loading…
Quality Guided Metric Learning for Domain Adaptation Person Re-Identification
Person re-identification is the task of identifying pedestrians across different cameras. Domain adaptation person re-identification involves transferring knowledge from labeled source domains to unlabeled target domains, with applications in security and surveillance. Challenges emerge due to varia...
Saved in:
Published in: | IEEE transactions on consumer electronics 2024-08, Vol.70 (3), p.6023-6030 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-27f8ff7a4f77db267014b758a71e6547f56132220fbf3a3aca09c92c9a441b733 |
container_end_page | 6030 |
container_issue | 3 |
container_start_page | 6023 |
container_title | IEEE transactions on consumer electronics |
container_volume | 70 |
creator | Zhang, Lei Li, Haisheng Liu, Ruijun Wang, Xiaochuan Wu, Xiaoqun |
description | Person re-identification is the task of identifying pedestrians across different cameras. Domain adaptation person re-identification involves transferring knowledge from labeled source domains to unlabeled target domains, with applications in security and surveillance. Challenges emerge due to variations in sample quality and disparities in distance distribution between positive and negative sample pairs. To address these challenges, this paper proposes a quality guided metric learning approach for domain adaptation person re-identification. We focus on improving appearance similarity metrics by evaluating sample quality based on local visibility, categorizing images as high or low quality. Besides, we introduce an adaptive weight triplet loss incorporating camera information to optimize triplets. This reduces the effects of invalid triplets and facilitating ongoing target domain learning.We have conducted comprehensive comparative evaluations to showcase the advantages and superiority of our proposed method. Our method has 2.6%, 1.9%, and 6.2% improved on Market-1501, DukeMTMC-reID, and MSMT17 datasets, respectively. |
doi_str_mv | 10.1109/TCE.2024.3386657 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3144172260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10495337</ieee_id><sourcerecordid>3144172260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-27f8ff7a4f77db267014b758a71e6547f56132220fbf3a3aca09c92c9a441b733</originalsourceid><addsrcrecordid>eNpNkDtPwzAURi0EEqWwMzBYYk7x28lYlVIqpeKhMluOYyNXbVJsZ-i_x6UdmL7hnu_eqwPAPUYTjFH1tJ7NJwQRNqG0FILLCzDCnJcFw0ReghFCVVlQJOg1uIlxgxBmnJQjsPoY9NanA1wMvrUtXNkUvIG11aHz3Td0fYDP_U77Dk5bvU86-b6D7zbEHJ-2WLa2S9558ze4BVdOb6O9O-cYfL3M17PXon5bLGfTujCE8VQQ6UrnpGZOyrYhQuZvGslLLbEVnEnHBaaEEOQaRzXVRqPKVMRUmjHcSErH4PG0dx_6n8HGpDb9ELp8UlGcGUmIQJlCJ8qEPsZgndoHv9PhoDBSR2kqS1NHaeosLVceThVvrf2Hs4pTKukvpuxnKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144172260</pqid></control><display><type>article</type><title>Quality Guided Metric Learning for Domain Adaptation Person Re-Identification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Lei ; Li, Haisheng ; Liu, Ruijun ; Wang, Xiaochuan ; Wu, Xiaoqun</creator><creatorcontrib>Zhang, Lei ; Li, Haisheng ; Liu, Ruijun ; Wang, Xiaochuan ; Wu, Xiaoqun</creatorcontrib><description>Person re-identification is the task of identifying pedestrians across different cameras. Domain adaptation person re-identification involves transferring knowledge from labeled source domains to unlabeled target domains, with applications in security and surveillance. Challenges emerge due to variations in sample quality and disparities in distance distribution between positive and negative sample pairs. To address these challenges, this paper proposes a quality guided metric learning approach for domain adaptation person re-identification. We focus on improving appearance similarity metrics by evaluating sample quality based on local visibility, categorizing images as high or low quality. Besides, we introduce an adaptive weight triplet loss incorporating camera information to optimize triplets. This reduces the effects of invalid triplets and facilitating ongoing target domain learning.We have conducted comprehensive comparative evaluations to showcase the advantages and superiority of our proposed method. Our method has 2.6%, 1.9%, and 6.2% improved on Market-1501, DukeMTMC-reID, and MSMT17 datasets, respectively.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3386657</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Adaptive sampling ; adaptive weight ; Cameras ; Data models ; Image quality ; Learning ; metric learning ; Noise ; Pedestrians ; Person Re-identification ; quality constraint ; Surveillance ; Training ; triplet loss</subject><ispartof>IEEE transactions on consumer electronics, 2024-08, Vol.70 (3), p.6023-6030</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-27f8ff7a4f77db267014b758a71e6547f56132220fbf3a3aca09c92c9a441b733</cites><orcidid>0000-0001-6977-6876 ; 0000-0003-3689-6868 ; 0000-0003-4861-0513 ; 0000-0003-4871-8989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10495337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Li, Haisheng</creatorcontrib><creatorcontrib>Liu, Ruijun</creatorcontrib><creatorcontrib>Wang, Xiaochuan</creatorcontrib><creatorcontrib>Wu, Xiaoqun</creatorcontrib><title>Quality Guided Metric Learning for Domain Adaptation Person Re-Identification</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Person re-identification is the task of identifying pedestrians across different cameras. Domain adaptation person re-identification involves transferring knowledge from labeled source domains to unlabeled target domains, with applications in security and surveillance. Challenges emerge due to variations in sample quality and disparities in distance distribution between positive and negative sample pairs. To address these challenges, this paper proposes a quality guided metric learning approach for domain adaptation person re-identification. We focus on improving appearance similarity metrics by evaluating sample quality based on local visibility, categorizing images as high or low quality. Besides, we introduce an adaptive weight triplet loss incorporating camera information to optimize triplets. This reduces the effects of invalid triplets and facilitating ongoing target domain learning.We have conducted comprehensive comparative evaluations to showcase the advantages and superiority of our proposed method. Our method has 2.6%, 1.9%, and 6.2% improved on Market-1501, DukeMTMC-reID, and MSMT17 datasets, respectively.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Adaptive sampling</subject><subject>adaptive weight</subject><subject>Cameras</subject><subject>Data models</subject><subject>Image quality</subject><subject>Learning</subject><subject>metric learning</subject><subject>Noise</subject><subject>Pedestrians</subject><subject>Person Re-identification</subject><subject>quality constraint</subject><subject>Surveillance</subject><subject>Training</subject><subject>triplet loss</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAURi0EEqWwMzBYYk7x28lYlVIqpeKhMluOYyNXbVJsZ-i_x6UdmL7hnu_eqwPAPUYTjFH1tJ7NJwQRNqG0FILLCzDCnJcFw0ReghFCVVlQJOg1uIlxgxBmnJQjsPoY9NanA1wMvrUtXNkUvIG11aHz3Td0fYDP_U77Dk5bvU86-b6D7zbEHJ-2WLa2S9558ze4BVdOb6O9O-cYfL3M17PXon5bLGfTujCE8VQQ6UrnpGZOyrYhQuZvGslLLbEVnEnHBaaEEOQaRzXVRqPKVMRUmjHcSErH4PG0dx_6n8HGpDb9ELp8UlGcGUmIQJlCJ8qEPsZgndoHv9PhoDBSR2kqS1NHaeosLVceThVvrf2Hs4pTKukvpuxnKw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Lei</creator><creator>Li, Haisheng</creator><creator>Liu, Ruijun</creator><creator>Wang, Xiaochuan</creator><creator>Wu, Xiaoqun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6977-6876</orcidid><orcidid>https://orcid.org/0000-0003-3689-6868</orcidid><orcidid>https://orcid.org/0000-0003-4861-0513</orcidid><orcidid>https://orcid.org/0000-0003-4871-8989</orcidid></search><sort><creationdate>20240801</creationdate><title>Quality Guided Metric Learning for Domain Adaptation Person Re-Identification</title><author>Zhang, Lei ; Li, Haisheng ; Liu, Ruijun ; Wang, Xiaochuan ; Wu, Xiaoqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-27f8ff7a4f77db267014b758a71e6547f56132220fbf3a3aca09c92c9a441b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Adaptive sampling</topic><topic>adaptive weight</topic><topic>Cameras</topic><topic>Data models</topic><topic>Image quality</topic><topic>Learning</topic><topic>metric learning</topic><topic>Noise</topic><topic>Pedestrians</topic><topic>Person Re-identification</topic><topic>quality constraint</topic><topic>Surveillance</topic><topic>Training</topic><topic>triplet loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Li, Haisheng</creatorcontrib><creatorcontrib>Liu, Ruijun</creatorcontrib><creatorcontrib>Wang, Xiaochuan</creatorcontrib><creatorcontrib>Wu, Xiaoqun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lei</au><au>Li, Haisheng</au><au>Liu, Ruijun</au><au>Wang, Xiaochuan</au><au>Wu, Xiaoqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality Guided Metric Learning for Domain Adaptation Person Re-Identification</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>70</volume><issue>3</issue><spage>6023</spage><epage>6030</epage><pages>6023-6030</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Person re-identification is the task of identifying pedestrians across different cameras. Domain adaptation person re-identification involves transferring knowledge from labeled source domains to unlabeled target domains, with applications in security and surveillance. Challenges emerge due to variations in sample quality and disparities in distance distribution between positive and negative sample pairs. To address these challenges, this paper proposes a quality guided metric learning approach for domain adaptation person re-identification. We focus on improving appearance similarity metrics by evaluating sample quality based on local visibility, categorizing images as high or low quality. Besides, we introduce an adaptive weight triplet loss incorporating camera information to optimize triplets. This reduces the effects of invalid triplets and facilitating ongoing target domain learning.We have conducted comprehensive comparative evaluations to showcase the advantages and superiority of our proposed method. Our method has 2.6%, 1.9%, and 6.2% improved on Market-1501, DukeMTMC-reID, and MSMT17 datasets, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3386657</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6977-6876</orcidid><orcidid>https://orcid.org/0000-0003-3689-6868</orcidid><orcidid>https://orcid.org/0000-0003-4861-0513</orcidid><orcidid>https://orcid.org/0000-0003-4871-8989</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2024-08, Vol.70 (3), p.6023-6030 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_proquest_journals_3144172260 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation Adaptation models Adaptive sampling adaptive weight Cameras Data models Image quality Learning metric learning Noise Pedestrians Person Re-identification quality constraint Surveillance Training triplet loss |
title | Quality Guided Metric Learning for Domain Adaptation Person Re-Identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality%20Guided%20Metric%20Learning%20for%20Domain%20Adaptation%20Person%20Re-Identification&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Zhang,%20Lei&rft.date=2024-08-01&rft.volume=70&rft.issue=3&rft.spage=6023&rft.epage=6030&rft.pages=6023-6030&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3386657&rft_dat=%3Cproquest_ieee_%3E3144172260%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-27f8ff7a4f77db267014b758a71e6547f56132220fbf3a3aca09c92c9a441b733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144172260&rft_id=info:pmid/&rft_ieee_id=10495337&rfr_iscdi=true |