Loading…

Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine

Metal recovery coupled with CO2 mineralization from sustainable sources, such as seawater, has garnered significant attention from environmental science and resource utilization perspectives. Herein, an earth‐abundant and efficient Fe/Fe3C@Fe‐N‐codoped carbon@carbon nanotube (Fe/Fe3C@Fe‐NC@CNT) hybr...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-12, Vol.34 (51), p.n/a
Main Authors: Vo, Truong‐Giang, Ng, Yan‐Ting, Thangasamy, Pitchai, Xi, Shibo, Venkatramanan, Raghunath, Shiong, Simon Choo Sze, Gao, Jiajian, Liu, Yan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 51
container_start_page
container_title Advanced functional materials
container_volume 34
creator Vo, Truong‐Giang
Ng, Yan‐Ting
Thangasamy, Pitchai
Xi, Shibo
Venkatramanan, Raghunath
Shiong, Simon Choo Sze
Gao, Jiajian
Liu, Yan
description Metal recovery coupled with CO2 mineralization from sustainable sources, such as seawater, has garnered significant attention from environmental science and resource utilization perspectives. Herein, an earth‐abundant and efficient Fe/Fe3C@Fe‐N‐codoped carbon@carbon nanotube (Fe/Fe3C@Fe‐NC@CNT) hybrid cathodic catalyst is introduced for electrochemically extracting magnesium and calcium from desalination brine while capturing CO2 to produce valuable Mg(OH)2 and CaCO3. The Fe/Fe3C@Fe‐NC@CNT, featuring the combination of single‐atomic Fe sites and graphitic layer‐wrapped Fe/Fe3C nanoparticles encapsulated within N‐doped mesoporous carbon tubes, achieves over 90% of Ca2+ and Mg2+ metal cations recovery efficiency at 25 mA cm−2 for 6 h. More importantly, the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst efficiently suppresses the competitive hydrogen evolution side reaction even at high currents and boasts a wider operating potential range compared to benchmark Pt/C, enhancing the metal recovery efficiency and CO2 capture capability. These findings underscore the potential of the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst in revolutionizing brine management and waste stream handling, offering a promising and sustainable solution to these critical environmental challenges. The unique Fe/Fe3C@Fe‐NC@CNT hybrid catalyst not only exhibits good oxygen reduction reaction activity and durability in disposal brine but also effective suppression of competitive hydrogen evolution, allowing high metal recovery and CO2 mineralization compared to state‐of‐the‐art Pt/C catalyst.
doi_str_mv 10.1002/adfm.202415454
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3145448509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145448509</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1634-b2d86ba23117230ea07ae646d9670dfa7db46b050eecef734aa152257d35f813</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhonRxFq9et7EM-1-sdBbKxZr0o9Ee_BGBnZQGrrUBTTc9B_4G_0lUmt6mpnMk3cyj-NcMzpglPIh6Gw74JRL5klPnjg9pphyBeXB6bFnz-fORVVtKGW-L2TP-XpqDdqXvKrzlEQ4jFCE4wh_Pr-X4TgEm5SGLMGUdZMgmWGNtqxq26R1Y5FkpSVT8womRU3CFSch7P4WYDRZ5F0wFOQR0_IdbUsyW27JHVZQ5AbqvAu-tR1z6ZxlUFR49V_7zjqarsOZO1_dP4STubtjSkg34TpQCXDBmM8FRaA-oJJKj5RPdQa-TqRKqEcRU8y63wCYx7nna-FlARN95-YQu7PlW4NVHW_KxpruYixY50sGHh111OhAfeQFtvHO5luwbcxovFcc7xXHR8Xx5C5aHCfxC1yKc4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145448509</pqid></control><display><type>article</type><title>Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Vo, Truong‐Giang ; Ng, Yan‐Ting ; Thangasamy, Pitchai ; Xi, Shibo ; Venkatramanan, Raghunath ; Shiong, Simon Choo Sze ; Gao, Jiajian ; Liu, Yan</creator><creatorcontrib>Vo, Truong‐Giang ; Ng, Yan‐Ting ; Thangasamy, Pitchai ; Xi, Shibo ; Venkatramanan, Raghunath ; Shiong, Simon Choo Sze ; Gao, Jiajian ; Liu, Yan</creatorcontrib><description>Metal recovery coupled with CO2 mineralization from sustainable sources, such as seawater, has garnered significant attention from environmental science and resource utilization perspectives. Herein, an earth‐abundant and efficient Fe/Fe3C@Fe‐N‐codoped carbon@carbon nanotube (Fe/Fe3C@Fe‐NC@CNT) hybrid cathodic catalyst is introduced for electrochemically extracting magnesium and calcium from desalination brine while capturing CO2 to produce valuable Mg(OH)2 and CaCO3. The Fe/Fe3C@Fe‐NC@CNT, featuring the combination of single‐atomic Fe sites and graphitic layer‐wrapped Fe/Fe3C nanoparticles encapsulated within N‐doped mesoporous carbon tubes, achieves over 90% of Ca2+ and Mg2+ metal cations recovery efficiency at 25 mA cm−2 for 6 h. More importantly, the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst efficiently suppresses the competitive hydrogen evolution side reaction even at high currents and boasts a wider operating potential range compared to benchmark Pt/C, enhancing the metal recovery efficiency and CO2 capture capability. These findings underscore the potential of the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst in revolutionizing brine management and waste stream handling, offering a promising and sustainable solution to these critical environmental challenges. The unique Fe/Fe3C@Fe‐NC@CNT hybrid catalyst not only exhibits good oxygen reduction reaction activity and durability in disposal brine but also effective suppression of competitive hydrogen evolution, allowing high metal recovery and CO2 mineralization compared to state‐of‐the‐art Pt/C catalyst.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202415454</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>brine treatment ; Brines ; Calcium carbonate ; Calcium ions ; Carbon ; Carbon dioxide ; Carbon nanotubes ; Carbon sequestration ; Catalysts ; Cementite ; CO2 mineralization ; Desalination ; Environmental management ; Heterostructures ; Hydrogen evolution ; iron carbide ; Iron carbides ; iron‐nitrogen‐doped carbon ; Magnesium ; oxygen reduction electrocatalysis ; Recovery ; Resource utilization ; Seawater ; Tubes ; Waste management</subject><ispartof>Advanced functional materials, 2024-12, Vol.34 (51), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7507-3445 ; 0000-0001-5449-2109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vo, Truong‐Giang</creatorcontrib><creatorcontrib>Ng, Yan‐Ting</creatorcontrib><creatorcontrib>Thangasamy, Pitchai</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Venkatramanan, Raghunath</creatorcontrib><creatorcontrib>Shiong, Simon Choo Sze</creatorcontrib><creatorcontrib>Gao, Jiajian</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><title>Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine</title><title>Advanced functional materials</title><description>Metal recovery coupled with CO2 mineralization from sustainable sources, such as seawater, has garnered significant attention from environmental science and resource utilization perspectives. Herein, an earth‐abundant and efficient Fe/Fe3C@Fe‐N‐codoped carbon@carbon nanotube (Fe/Fe3C@Fe‐NC@CNT) hybrid cathodic catalyst is introduced for electrochemically extracting magnesium and calcium from desalination brine while capturing CO2 to produce valuable Mg(OH)2 and CaCO3. The Fe/Fe3C@Fe‐NC@CNT, featuring the combination of single‐atomic Fe sites and graphitic layer‐wrapped Fe/Fe3C nanoparticles encapsulated within N‐doped mesoporous carbon tubes, achieves over 90% of Ca2+ and Mg2+ metal cations recovery efficiency at 25 mA cm−2 for 6 h. More importantly, the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst efficiently suppresses the competitive hydrogen evolution side reaction even at high currents and boasts a wider operating potential range compared to benchmark Pt/C, enhancing the metal recovery efficiency and CO2 capture capability. These findings underscore the potential of the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst in revolutionizing brine management and waste stream handling, offering a promising and sustainable solution to these critical environmental challenges. The unique Fe/Fe3C@Fe‐NC@CNT hybrid catalyst not only exhibits good oxygen reduction reaction activity and durability in disposal brine but also effective suppression of competitive hydrogen evolution, allowing high metal recovery and CO2 mineralization compared to state‐of‐the‐art Pt/C catalyst.</description><subject>brine treatment</subject><subject>Brines</subject><subject>Calcium carbonate</subject><subject>Calcium ions</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Carbon sequestration</subject><subject>Catalysts</subject><subject>Cementite</subject><subject>CO2 mineralization</subject><subject>Desalination</subject><subject>Environmental management</subject><subject>Heterostructures</subject><subject>Hydrogen evolution</subject><subject>iron carbide</subject><subject>Iron carbides</subject><subject>iron‐nitrogen‐doped carbon</subject><subject>Magnesium</subject><subject>oxygen reduction electrocatalysis</subject><subject>Recovery</subject><subject>Resource utilization</subject><subject>Seawater</subject><subject>Tubes</subject><subject>Waste management</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Pg0AQhonRxFq9et7EM-1-sdBbKxZr0o9Ee_BGBnZQGrrUBTTc9B_4G_0lUmt6mpnMk3cyj-NcMzpglPIh6Gw74JRL5klPnjg9pphyBeXB6bFnz-fORVVtKGW-L2TP-XpqDdqXvKrzlEQ4jFCE4wh_Pr-X4TgEm5SGLMGUdZMgmWGNtqxq26R1Y5FkpSVT8womRU3CFSch7P4WYDRZ5F0wFOQR0_IdbUsyW27JHVZQ5AbqvAu-tR1z6ZxlUFR49V_7zjqarsOZO1_dP4STubtjSkg34TpQCXDBmM8FRaA-oJJKj5RPdQa-TqRKqEcRU8y63wCYx7nna-FlARN95-YQu7PlW4NVHW_KxpruYixY50sGHh111OhAfeQFtvHO5luwbcxovFcc7xXHR8Xx5C5aHCfxC1yKc4g</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Vo, Truong‐Giang</creator><creator>Ng, Yan‐Ting</creator><creator>Thangasamy, Pitchai</creator><creator>Xi, Shibo</creator><creator>Venkatramanan, Raghunath</creator><creator>Shiong, Simon Choo Sze</creator><creator>Gao, Jiajian</creator><creator>Liu, Yan</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7507-3445</orcidid><orcidid>https://orcid.org/0000-0001-5449-2109</orcidid></search><sort><creationdate>20241216</creationdate><title>Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine</title><author>Vo, Truong‐Giang ; Ng, Yan‐Ting ; Thangasamy, Pitchai ; Xi, Shibo ; Venkatramanan, Raghunath ; Shiong, Simon Choo Sze ; Gao, Jiajian ; Liu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1634-b2d86ba23117230ea07ae646d9670dfa7db46b050eecef734aa152257d35f813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brine treatment</topic><topic>Brines</topic><topic>Calcium carbonate</topic><topic>Calcium ions</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Carbon sequestration</topic><topic>Catalysts</topic><topic>Cementite</topic><topic>CO2 mineralization</topic><topic>Desalination</topic><topic>Environmental management</topic><topic>Heterostructures</topic><topic>Hydrogen evolution</topic><topic>iron carbide</topic><topic>Iron carbides</topic><topic>iron‐nitrogen‐doped carbon</topic><topic>Magnesium</topic><topic>oxygen reduction electrocatalysis</topic><topic>Recovery</topic><topic>Resource utilization</topic><topic>Seawater</topic><topic>Tubes</topic><topic>Waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vo, Truong‐Giang</creatorcontrib><creatorcontrib>Ng, Yan‐Ting</creatorcontrib><creatorcontrib>Thangasamy, Pitchai</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Venkatramanan, Raghunath</creatorcontrib><creatorcontrib>Shiong, Simon Choo Sze</creatorcontrib><creatorcontrib>Gao, Jiajian</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vo, Truong‐Giang</au><au>Ng, Yan‐Ting</au><au>Thangasamy, Pitchai</au><au>Xi, Shibo</au><au>Venkatramanan, Raghunath</au><au>Shiong, Simon Choo Sze</au><au>Gao, Jiajian</au><au>Liu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-16</date><risdate>2024</risdate><volume>34</volume><issue>51</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Metal recovery coupled with CO2 mineralization from sustainable sources, such as seawater, has garnered significant attention from environmental science and resource utilization perspectives. Herein, an earth‐abundant and efficient Fe/Fe3C@Fe‐N‐codoped carbon@carbon nanotube (Fe/Fe3C@Fe‐NC@CNT) hybrid cathodic catalyst is introduced for electrochemically extracting magnesium and calcium from desalination brine while capturing CO2 to produce valuable Mg(OH)2 and CaCO3. The Fe/Fe3C@Fe‐NC@CNT, featuring the combination of single‐atomic Fe sites and graphitic layer‐wrapped Fe/Fe3C nanoparticles encapsulated within N‐doped mesoporous carbon tubes, achieves over 90% of Ca2+ and Mg2+ metal cations recovery efficiency at 25 mA cm−2 for 6 h. More importantly, the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst efficiently suppresses the competitive hydrogen evolution side reaction even at high currents and boasts a wider operating potential range compared to benchmark Pt/C, enhancing the metal recovery efficiency and CO2 capture capability. These findings underscore the potential of the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst in revolutionizing brine management and waste stream handling, offering a promising and sustainable solution to these critical environmental challenges. The unique Fe/Fe3C@Fe‐NC@CNT hybrid catalyst not only exhibits good oxygen reduction reaction activity and durability in disposal brine but also effective suppression of competitive hydrogen evolution, allowing high metal recovery and CO2 mineralization compared to state‐of‐the‐art Pt/C catalyst.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202415454</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7507-3445</orcidid><orcidid>https://orcid.org/0000-0001-5449-2109</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-12, Vol.34 (51), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3145448509
source Wiley-Blackwell Read & Publish Collection
subjects brine treatment
Brines
Calcium carbonate
Calcium ions
Carbon
Carbon dioxide
Carbon nanotubes
Carbon sequestration
Catalysts
Cementite
CO2 mineralization
Desalination
Environmental management
Heterostructures
Hydrogen evolution
iron carbide
Iron carbides
iron‐nitrogen‐doped carbon
Magnesium
oxygen reduction electrocatalysis
Recovery
Resource utilization
Seawater
Tubes
Waste management
title Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20Fe/Fe3C@Fe%E2%80%90NC@Carbon%20Nanotube%20Heterostructure%20for%20Enhanced%20CO2%20Capture%20and%20Mineral%20Recovery%20from%20Desalination%20Brine&rft.jtitle=Advanced%20functional%20materials&rft.au=Vo,%20Truong%E2%80%90Giang&rft.date=2024-12-16&rft.volume=34&rft.issue=51&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202415454&rft_dat=%3Cproquest_wiley%3E3145448509%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1634-b2d86ba23117230ea07ae646d9670dfa7db46b050eecef734aa152257d35f813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145448509&rft_id=info:pmid/&rfr_iscdi=true