Loading…
Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine
Metal recovery coupled with CO2 mineralization from sustainable sources, such as seawater, has garnered significant attention from environmental science and resource utilization perspectives. Herein, an earth‐abundant and efficient Fe/Fe3C@Fe‐N‐codoped carbon@carbon nanotube (Fe/Fe3C@Fe‐NC@CNT) hybr...
Saved in:
Published in: | Advanced functional materials 2024-12, Vol.34 (51), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 51 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Vo, Truong‐Giang Ng, Yan‐Ting Thangasamy, Pitchai Xi, Shibo Venkatramanan, Raghunath Shiong, Simon Choo Sze Gao, Jiajian Liu, Yan |
description | Metal recovery coupled with CO2 mineralization from sustainable sources, such as seawater, has garnered significant attention from environmental science and resource utilization perspectives. Herein, an earth‐abundant and efficient Fe/Fe3C@Fe‐N‐codoped carbon@carbon nanotube (Fe/Fe3C@Fe‐NC@CNT) hybrid cathodic catalyst is introduced for electrochemically extracting magnesium and calcium from desalination brine while capturing CO2 to produce valuable Mg(OH)2 and CaCO3. The Fe/Fe3C@Fe‐NC@CNT, featuring the combination of single‐atomic Fe sites and graphitic layer‐wrapped Fe/Fe3C nanoparticles encapsulated within N‐doped mesoporous carbon tubes, achieves over 90% of Ca2+ and Mg2+ metal cations recovery efficiency at 25 mA cm−2 for 6 h. More importantly, the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst efficiently suppresses the competitive hydrogen evolution side reaction even at high currents and boasts a wider operating potential range compared to benchmark Pt/C, enhancing the metal recovery efficiency and CO2 capture capability. These findings underscore the potential of the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst in revolutionizing brine management and waste stream handling, offering a promising and sustainable solution to these critical environmental challenges.
The unique Fe/Fe3C@Fe‐NC@CNT hybrid catalyst not only exhibits good oxygen reduction reaction activity and durability in disposal brine but also effective suppression of competitive hydrogen evolution, allowing high metal recovery and CO2 mineralization compared to state‐of‐the‐art Pt/C catalyst. |
doi_str_mv | 10.1002/adfm.202415454 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3145448509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145448509</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1634-b2d86ba23117230ea07ae646d9670dfa7db46b050eecef734aa152257d35f813</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhonRxFq9et7EM-1-sdBbKxZr0o9Ee_BGBnZQGrrUBTTc9B_4G_0lUmt6mpnMk3cyj-NcMzpglPIh6Gw74JRL5klPnjg9pphyBeXB6bFnz-fORVVtKGW-L2TP-XpqDdqXvKrzlEQ4jFCE4wh_Pr-X4TgEm5SGLMGUdZMgmWGNtqxq26R1Y5FkpSVT8womRU3CFSch7P4WYDRZ5F0wFOQR0_IdbUsyW27JHVZQ5AbqvAu-tR1z6ZxlUFR49V_7zjqarsOZO1_dP4STubtjSkg34TpQCXDBmM8FRaA-oJJKj5RPdQa-TqRKqEcRU8y63wCYx7nna-FlARN95-YQu7PlW4NVHW_KxpruYixY50sGHh111OhAfeQFtvHO5luwbcxovFcc7xXHR8Xx5C5aHCfxC1yKc4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145448509</pqid></control><display><type>article</type><title>Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Vo, Truong‐Giang ; Ng, Yan‐Ting ; Thangasamy, Pitchai ; Xi, Shibo ; Venkatramanan, Raghunath ; Shiong, Simon Choo Sze ; Gao, Jiajian ; Liu, Yan</creator><creatorcontrib>Vo, Truong‐Giang ; Ng, Yan‐Ting ; Thangasamy, Pitchai ; Xi, Shibo ; Venkatramanan, Raghunath ; Shiong, Simon Choo Sze ; Gao, Jiajian ; Liu, Yan</creatorcontrib><description>Metal recovery coupled with CO2 mineralization from sustainable sources, such as seawater, has garnered significant attention from environmental science and resource utilization perspectives. Herein, an earth‐abundant and efficient Fe/Fe3C@Fe‐N‐codoped carbon@carbon nanotube (Fe/Fe3C@Fe‐NC@CNT) hybrid cathodic catalyst is introduced for electrochemically extracting magnesium and calcium from desalination brine while capturing CO2 to produce valuable Mg(OH)2 and CaCO3. The Fe/Fe3C@Fe‐NC@CNT, featuring the combination of single‐atomic Fe sites and graphitic layer‐wrapped Fe/Fe3C nanoparticles encapsulated within N‐doped mesoporous carbon tubes, achieves over 90% of Ca2+ and Mg2+ metal cations recovery efficiency at 25 mA cm−2 for 6 h. More importantly, the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst efficiently suppresses the competitive hydrogen evolution side reaction even at high currents and boasts a wider operating potential range compared to benchmark Pt/C, enhancing the metal recovery efficiency and CO2 capture capability. These findings underscore the potential of the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst in revolutionizing brine management and waste stream handling, offering a promising and sustainable solution to these critical environmental challenges.
The unique Fe/Fe3C@Fe‐NC@CNT hybrid catalyst not only exhibits good oxygen reduction reaction activity and durability in disposal brine but also effective suppression of competitive hydrogen evolution, allowing high metal recovery and CO2 mineralization compared to state‐of‐the‐art Pt/C catalyst.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202415454</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>brine treatment ; Brines ; Calcium carbonate ; Calcium ions ; Carbon ; Carbon dioxide ; Carbon nanotubes ; Carbon sequestration ; Catalysts ; Cementite ; CO2 mineralization ; Desalination ; Environmental management ; Heterostructures ; Hydrogen evolution ; iron carbide ; Iron carbides ; iron‐nitrogen‐doped carbon ; Magnesium ; oxygen reduction electrocatalysis ; Recovery ; Resource utilization ; Seawater ; Tubes ; Waste management</subject><ispartof>Advanced functional materials, 2024-12, Vol.34 (51), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7507-3445 ; 0000-0001-5449-2109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vo, Truong‐Giang</creatorcontrib><creatorcontrib>Ng, Yan‐Ting</creatorcontrib><creatorcontrib>Thangasamy, Pitchai</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Venkatramanan, Raghunath</creatorcontrib><creatorcontrib>Shiong, Simon Choo Sze</creatorcontrib><creatorcontrib>Gao, Jiajian</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><title>Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine</title><title>Advanced functional materials</title><description>Metal recovery coupled with CO2 mineralization from sustainable sources, such as seawater, has garnered significant attention from environmental science and resource utilization perspectives. Herein, an earth‐abundant and efficient Fe/Fe3C@Fe‐N‐codoped carbon@carbon nanotube (Fe/Fe3C@Fe‐NC@CNT) hybrid cathodic catalyst is introduced for electrochemically extracting magnesium and calcium from desalination brine while capturing CO2 to produce valuable Mg(OH)2 and CaCO3. The Fe/Fe3C@Fe‐NC@CNT, featuring the combination of single‐atomic Fe sites and graphitic layer‐wrapped Fe/Fe3C nanoparticles encapsulated within N‐doped mesoporous carbon tubes, achieves over 90% of Ca2+ and Mg2+ metal cations recovery efficiency at 25 mA cm−2 for 6 h. More importantly, the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst efficiently suppresses the competitive hydrogen evolution side reaction even at high currents and boasts a wider operating potential range compared to benchmark Pt/C, enhancing the metal recovery efficiency and CO2 capture capability. These findings underscore the potential of the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst in revolutionizing brine management and waste stream handling, offering a promising and sustainable solution to these critical environmental challenges.
The unique Fe/Fe3C@Fe‐NC@CNT hybrid catalyst not only exhibits good oxygen reduction reaction activity and durability in disposal brine but also effective suppression of competitive hydrogen evolution, allowing high metal recovery and CO2 mineralization compared to state‐of‐the‐art Pt/C catalyst.</description><subject>brine treatment</subject><subject>Brines</subject><subject>Calcium carbonate</subject><subject>Calcium ions</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Carbon sequestration</subject><subject>Catalysts</subject><subject>Cementite</subject><subject>CO2 mineralization</subject><subject>Desalination</subject><subject>Environmental management</subject><subject>Heterostructures</subject><subject>Hydrogen evolution</subject><subject>iron carbide</subject><subject>Iron carbides</subject><subject>iron‐nitrogen‐doped carbon</subject><subject>Magnesium</subject><subject>oxygen reduction electrocatalysis</subject><subject>Recovery</subject><subject>Resource utilization</subject><subject>Seawater</subject><subject>Tubes</subject><subject>Waste management</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Pg0AQhonRxFq9et7EM-1-sdBbKxZr0o9Ee_BGBnZQGrrUBTTc9B_4G_0lUmt6mpnMk3cyj-NcMzpglPIh6Gw74JRL5klPnjg9pphyBeXB6bFnz-fORVVtKGW-L2TP-XpqDdqXvKrzlEQ4jFCE4wh_Pr-X4TgEm5SGLMGUdZMgmWGNtqxq26R1Y5FkpSVT8womRU3CFSch7P4WYDRZ5F0wFOQR0_IdbUsyW27JHVZQ5AbqvAu-tR1z6ZxlUFR49V_7zjqarsOZO1_dP4STubtjSkg34TpQCXDBmM8FRaA-oJJKj5RPdQa-TqRKqEcRU8y63wCYx7nna-FlARN95-YQu7PlW4NVHW_KxpruYixY50sGHh111OhAfeQFtvHO5luwbcxovFcc7xXHR8Xx5C5aHCfxC1yKc4g</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Vo, Truong‐Giang</creator><creator>Ng, Yan‐Ting</creator><creator>Thangasamy, Pitchai</creator><creator>Xi, Shibo</creator><creator>Venkatramanan, Raghunath</creator><creator>Shiong, Simon Choo Sze</creator><creator>Gao, Jiajian</creator><creator>Liu, Yan</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7507-3445</orcidid><orcidid>https://orcid.org/0000-0001-5449-2109</orcidid></search><sort><creationdate>20241216</creationdate><title>Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine</title><author>Vo, Truong‐Giang ; Ng, Yan‐Ting ; Thangasamy, Pitchai ; Xi, Shibo ; Venkatramanan, Raghunath ; Shiong, Simon Choo Sze ; Gao, Jiajian ; Liu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1634-b2d86ba23117230ea07ae646d9670dfa7db46b050eecef734aa152257d35f813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brine treatment</topic><topic>Brines</topic><topic>Calcium carbonate</topic><topic>Calcium ions</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Carbon sequestration</topic><topic>Catalysts</topic><topic>Cementite</topic><topic>CO2 mineralization</topic><topic>Desalination</topic><topic>Environmental management</topic><topic>Heterostructures</topic><topic>Hydrogen evolution</topic><topic>iron carbide</topic><topic>Iron carbides</topic><topic>iron‐nitrogen‐doped carbon</topic><topic>Magnesium</topic><topic>oxygen reduction electrocatalysis</topic><topic>Recovery</topic><topic>Resource utilization</topic><topic>Seawater</topic><topic>Tubes</topic><topic>Waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vo, Truong‐Giang</creatorcontrib><creatorcontrib>Ng, Yan‐Ting</creatorcontrib><creatorcontrib>Thangasamy, Pitchai</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Venkatramanan, Raghunath</creatorcontrib><creatorcontrib>Shiong, Simon Choo Sze</creatorcontrib><creatorcontrib>Gao, Jiajian</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vo, Truong‐Giang</au><au>Ng, Yan‐Ting</au><au>Thangasamy, Pitchai</au><au>Xi, Shibo</au><au>Venkatramanan, Raghunath</au><au>Shiong, Simon Choo Sze</au><au>Gao, Jiajian</au><au>Liu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-16</date><risdate>2024</risdate><volume>34</volume><issue>51</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Metal recovery coupled with CO2 mineralization from sustainable sources, such as seawater, has garnered significant attention from environmental science and resource utilization perspectives. Herein, an earth‐abundant and efficient Fe/Fe3C@Fe‐N‐codoped carbon@carbon nanotube (Fe/Fe3C@Fe‐NC@CNT) hybrid cathodic catalyst is introduced for electrochemically extracting magnesium and calcium from desalination brine while capturing CO2 to produce valuable Mg(OH)2 and CaCO3. The Fe/Fe3C@Fe‐NC@CNT, featuring the combination of single‐atomic Fe sites and graphitic layer‐wrapped Fe/Fe3C nanoparticles encapsulated within N‐doped mesoporous carbon tubes, achieves over 90% of Ca2+ and Mg2+ metal cations recovery efficiency at 25 mA cm−2 for 6 h. More importantly, the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst efficiently suppresses the competitive hydrogen evolution side reaction even at high currents and boasts a wider operating potential range compared to benchmark Pt/C, enhancing the metal recovery efficiency and CO2 capture capability. These findings underscore the potential of the Fe/Fe3C@Fe‐NC@CNT hybrid catalyst in revolutionizing brine management and waste stream handling, offering a promising and sustainable solution to these critical environmental challenges.
The unique Fe/Fe3C@Fe‐NC@CNT hybrid catalyst not only exhibits good oxygen reduction reaction activity and durability in disposal brine but also effective suppression of competitive hydrogen evolution, allowing high metal recovery and CO2 mineralization compared to state‐of‐the‐art Pt/C catalyst.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202415454</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7507-3445</orcidid><orcidid>https://orcid.org/0000-0001-5449-2109</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-12, Vol.34 (51), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3145448509 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | brine treatment Brines Calcium carbonate Calcium ions Carbon Carbon dioxide Carbon nanotubes Carbon sequestration Catalysts Cementite CO2 mineralization Desalination Environmental management Heterostructures Hydrogen evolution iron carbide Iron carbides iron‐nitrogen‐doped carbon Magnesium oxygen reduction electrocatalysis Recovery Resource utilization Seawater Tubes Waste management |
title | Synergistic Fe/Fe3C@Fe‐NC@Carbon Nanotube Heterostructure for Enhanced CO2 Capture and Mineral Recovery from Desalination Brine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20Fe/Fe3C@Fe%E2%80%90NC@Carbon%20Nanotube%20Heterostructure%20for%20Enhanced%20CO2%20Capture%20and%20Mineral%20Recovery%20from%20Desalination%20Brine&rft.jtitle=Advanced%20functional%20materials&rft.au=Vo,%20Truong%E2%80%90Giang&rft.date=2024-12-16&rft.volume=34&rft.issue=51&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202415454&rft_dat=%3Cproquest_wiley%3E3145448509%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1634-b2d86ba23117230ea07ae646d9670dfa7db46b050eecef734aa152257d35f813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145448509&rft_id=info:pmid/&rfr_iscdi=true |