Loading…
Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics
Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. Additive manufacturing has been investigated as a more time-, energy- and cost-efficient method that offers g...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2025-01, Vol.13 (1), p.654-668 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 668 |
container_issue | 1 |
container_start_page | 654 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 13 |
creator | Banerjee, Priyanshu Huang, Jiyuan Lombardo, Jacob Ambade, Swapnil B Ambade, Rohan B Han, Tae Hee Kulkarni, Srushti Sengupta, Shreyasi Rosenzweig, Zeev Fairbrother, Howard Li, Sichao Shin, Sunmi Madan, Deepa |
description | Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. Additive manufacturing has been investigated as a more time-, energy- and cost-efficient method that offers greater flexibility than traditional manufacturing techniques. Additionally, tetrahedrites are promising thermoelectric materials in high-temperature applications because they are non-toxic and earth-abundant. Herein, this work demonstrates the fabrication of scalable and sustainable Cu
12
Sb
4
S
13
(CAS) based composite films and flexible TEG devices (f-TEGs) with 2D MXene nanosheets using a low-thermal budget additive manufacturing approach for room temperature applications. 2D MXene nanosheets introduced energy-barrier scattering and nanoscale features to effectively increase the room-temperature
ZT
to 0.22, 10% higher than bulk CAS, by decoupling electrical conductivity, Seebeck coefficient, and thermal conductivity. CAS and 2D MXenes were found to be environmentally safe through a bacterial viability study. The process is used to create a 5-leg f-TEG device producing a power of 5.3 μW and a power density of 140 μW cm
−2
at a Δ
T
of 25 K. Therefore, this work demonstrates that combining scalable and sustainable materials and methods is an effective strategy for high-performance room-temperature f-TEGs that could potentially harvest the low waste heat energy of the human body.
Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. |
doi_str_mv | 10.1039/d4ta05056h |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_3145640677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145640677</sourcerecordid><originalsourceid>FETCH-LOGICAL-p135t-9c751bf589a8655c8b2a707b305ff67400fb1dfeed97a092ec2ecfe6caf63f943</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWGov3oUFz6vZzSbZHKX4BRUPKnhbZrMTm5Jma5JK-98bqejwYH4wj_dgCDmv6FVFmboemgSUUy6WR2RSZyplo8TxH7ftKZnFuKJ5WkqFUhNiXjQ46B0W4IcC_ZcNo1-jT-DcvjDBoh8yPL2jxzJhCrDEIdiEsTBjKDzuUvmRbwGSHX1hHO7sT1paYliP6FCnYHU8IycGXMTZ756St7vb1_lDuXi-f5zfLMpNxXgqlZa86g1vFbSCc932NUgqe0a5MUI2lJq-GgzioCRQVaPOMig0GMGMatiUXB5yN2H83GJM3WrcBp8rO1Y1XDRUSJldFwdXiLrbBLuGsO_-v8e-AYomZZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145640677</pqid></control><display><type>article</type><title>Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics</title><source>Royal Society of Chemistry</source><creator>Banerjee, Priyanshu ; Huang, Jiyuan ; Lombardo, Jacob ; Ambade, Swapnil B ; Ambade, Rohan B ; Han, Tae Hee ; Kulkarni, Srushti ; Sengupta, Shreyasi ; Rosenzweig, Zeev ; Fairbrother, Howard ; Li, Sichao ; Shin, Sunmi ; Madan, Deepa</creator><creatorcontrib>Banerjee, Priyanshu ; Huang, Jiyuan ; Lombardo, Jacob ; Ambade, Swapnil B ; Ambade, Rohan B ; Han, Tae Hee ; Kulkarni, Srushti ; Sengupta, Shreyasi ; Rosenzweig, Zeev ; Fairbrother, Howard ; Li, Sichao ; Shin, Sunmi ; Madan, Deepa</creatorcontrib><description>Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. Additive manufacturing has been investigated as a more time-, energy- and cost-efficient method that offers greater flexibility than traditional manufacturing techniques. Additionally, tetrahedrites are promising thermoelectric materials in high-temperature applications because they are non-toxic and earth-abundant. Herein, this work demonstrates the fabrication of scalable and sustainable Cu
12
Sb
4
S
13
(CAS) based composite films and flexible TEG devices (f-TEGs) with 2D MXene nanosheets using a low-thermal budget additive manufacturing approach for room temperature applications. 2D MXene nanosheets introduced energy-barrier scattering and nanoscale features to effectively increase the room-temperature
ZT
to 0.22, 10% higher than bulk CAS, by decoupling electrical conductivity, Seebeck coefficient, and thermal conductivity. CAS and 2D MXenes were found to be environmentally safe through a bacterial viability study. The process is used to create a 5-leg f-TEG device producing a power of 5.3 μW and a power density of 140 μW cm
−2
at a Δ
T
of 25 K. Therefore, this work demonstrates that combining scalable and sustainable materials and methods is an effective strategy for high-performance room-temperature f-TEGs that could potentially harvest the low waste heat energy of the human body.
Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta05056h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Additive manufacturing ; Bismuth tellurides ; Body temperature ; Bulk density ; Decoupling ; Electrical conductivity ; Electrical resistivity ; Energy harvesting ; Fabrication ; High temperature ; Manufacturing ; MXenes ; Nanosheets ; Rare earth elements ; Room temperature ; Seebeck effect ; Sustainable materials ; Thermal conductivity ; Thermoelectric generators ; Thermoelectric materials</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2025-01, Vol.13 (1), p.654-668</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Banerjee, Priyanshu</creatorcontrib><creatorcontrib>Huang, Jiyuan</creatorcontrib><creatorcontrib>Lombardo, Jacob</creatorcontrib><creatorcontrib>Ambade, Swapnil B</creatorcontrib><creatorcontrib>Ambade, Rohan B</creatorcontrib><creatorcontrib>Han, Tae Hee</creatorcontrib><creatorcontrib>Kulkarni, Srushti</creatorcontrib><creatorcontrib>Sengupta, Shreyasi</creatorcontrib><creatorcontrib>Rosenzweig, Zeev</creatorcontrib><creatorcontrib>Fairbrother, Howard</creatorcontrib><creatorcontrib>Li, Sichao</creatorcontrib><creatorcontrib>Shin, Sunmi</creatorcontrib><creatorcontrib>Madan, Deepa</creatorcontrib><title>Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. Additive manufacturing has been investigated as a more time-, energy- and cost-efficient method that offers greater flexibility than traditional manufacturing techniques. Additionally, tetrahedrites are promising thermoelectric materials in high-temperature applications because they are non-toxic and earth-abundant. Herein, this work demonstrates the fabrication of scalable and sustainable Cu
12
Sb
4
S
13
(CAS) based composite films and flexible TEG devices (f-TEGs) with 2D MXene nanosheets using a low-thermal budget additive manufacturing approach for room temperature applications. 2D MXene nanosheets introduced energy-barrier scattering and nanoscale features to effectively increase the room-temperature
ZT
to 0.22, 10% higher than bulk CAS, by decoupling electrical conductivity, Seebeck coefficient, and thermal conductivity. CAS and 2D MXenes were found to be environmentally safe through a bacterial viability study. The process is used to create a 5-leg f-TEG device producing a power of 5.3 μW and a power density of 140 μW cm
−2
at a Δ
T
of 25 K. Therefore, this work demonstrates that combining scalable and sustainable materials and methods is an effective strategy for high-performance room-temperature f-TEGs that could potentially harvest the low waste heat energy of the human body.
Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride.</description><subject>Additive manufacturing</subject><subject>Bismuth tellurides</subject><subject>Body temperature</subject><subject>Bulk density</subject><subject>Decoupling</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy harvesting</subject><subject>Fabrication</subject><subject>High temperature</subject><subject>Manufacturing</subject><subject>MXenes</subject><subject>Nanosheets</subject><subject>Rare earth elements</subject><subject>Room temperature</subject><subject>Seebeck effect</subject><subject>Sustainable materials</subject><subject>Thermal conductivity</subject><subject>Thermoelectric generators</subject><subject>Thermoelectric materials</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWGov3oUFz6vZzSbZHKX4BRUPKnhbZrMTm5Jma5JK-98bqejwYH4wj_dgCDmv6FVFmboemgSUUy6WR2RSZyplo8TxH7ftKZnFuKJ5WkqFUhNiXjQ46B0W4IcC_ZcNo1-jT-DcvjDBoh8yPL2jxzJhCrDEIdiEsTBjKDzuUvmRbwGSHX1hHO7sT1paYliP6FCnYHU8IycGXMTZ756St7vb1_lDuXi-f5zfLMpNxXgqlZa86g1vFbSCc932NUgqe0a5MUI2lJq-GgzioCRQVaPOMig0GMGMatiUXB5yN2H83GJM3WrcBp8rO1Y1XDRUSJldFwdXiLrbBLuGsO_-v8e-AYomZZY</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Banerjee, Priyanshu</creator><creator>Huang, Jiyuan</creator><creator>Lombardo, Jacob</creator><creator>Ambade, Swapnil B</creator><creator>Ambade, Rohan B</creator><creator>Han, Tae Hee</creator><creator>Kulkarni, Srushti</creator><creator>Sengupta, Shreyasi</creator><creator>Rosenzweig, Zeev</creator><creator>Fairbrother, Howard</creator><creator>Li, Sichao</creator><creator>Shin, Sunmi</creator><creator>Madan, Deepa</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20250101</creationdate><title>Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics</title><author>Banerjee, Priyanshu ; Huang, Jiyuan ; Lombardo, Jacob ; Ambade, Swapnil B ; Ambade, Rohan B ; Han, Tae Hee ; Kulkarni, Srushti ; Sengupta, Shreyasi ; Rosenzweig, Zeev ; Fairbrother, Howard ; Li, Sichao ; Shin, Sunmi ; Madan, Deepa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p135t-9c751bf589a8655c8b2a707b305ff67400fb1dfeed97a092ec2ecfe6caf63f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Additive manufacturing</topic><topic>Bismuth tellurides</topic><topic>Body temperature</topic><topic>Bulk density</topic><topic>Decoupling</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy harvesting</topic><topic>Fabrication</topic><topic>High temperature</topic><topic>Manufacturing</topic><topic>MXenes</topic><topic>Nanosheets</topic><topic>Rare earth elements</topic><topic>Room temperature</topic><topic>Seebeck effect</topic><topic>Sustainable materials</topic><topic>Thermal conductivity</topic><topic>Thermoelectric generators</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Priyanshu</creatorcontrib><creatorcontrib>Huang, Jiyuan</creatorcontrib><creatorcontrib>Lombardo, Jacob</creatorcontrib><creatorcontrib>Ambade, Swapnil B</creatorcontrib><creatorcontrib>Ambade, Rohan B</creatorcontrib><creatorcontrib>Han, Tae Hee</creatorcontrib><creatorcontrib>Kulkarni, Srushti</creatorcontrib><creatorcontrib>Sengupta, Shreyasi</creatorcontrib><creatorcontrib>Rosenzweig, Zeev</creatorcontrib><creatorcontrib>Fairbrother, Howard</creatorcontrib><creatorcontrib>Li, Sichao</creatorcontrib><creatorcontrib>Shin, Sunmi</creatorcontrib><creatorcontrib>Madan, Deepa</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Priyanshu</au><au>Huang, Jiyuan</au><au>Lombardo, Jacob</au><au>Ambade, Swapnil B</au><au>Ambade, Rohan B</au><au>Han, Tae Hee</au><au>Kulkarni, Srushti</au><au>Sengupta, Shreyasi</au><au>Rosenzweig, Zeev</au><au>Fairbrother, Howard</au><au>Li, Sichao</au><au>Shin, Sunmi</au><au>Madan, Deepa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>13</volume><issue>1</issue><spage>654</spage><epage>668</epage><pages>654-668</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. Additive manufacturing has been investigated as a more time-, energy- and cost-efficient method that offers greater flexibility than traditional manufacturing techniques. Additionally, tetrahedrites are promising thermoelectric materials in high-temperature applications because they are non-toxic and earth-abundant. Herein, this work demonstrates the fabrication of scalable and sustainable Cu
12
Sb
4
S
13
(CAS) based composite films and flexible TEG devices (f-TEGs) with 2D MXene nanosheets using a low-thermal budget additive manufacturing approach for room temperature applications. 2D MXene nanosheets introduced energy-barrier scattering and nanoscale features to effectively increase the room-temperature
ZT
to 0.22, 10% higher than bulk CAS, by decoupling electrical conductivity, Seebeck coefficient, and thermal conductivity. CAS and 2D MXenes were found to be environmentally safe through a bacterial viability study. The process is used to create a 5-leg f-TEG device producing a power of 5.3 μW and a power density of 140 μW cm
−2
at a Δ
T
of 25 K. Therefore, this work demonstrates that combining scalable and sustainable materials and methods is an effective strategy for high-performance room-temperature f-TEGs that could potentially harvest the low waste heat energy of the human body.
Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta05056h</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2025-01, Vol.13 (1), p.654-668 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3145640677 |
source | Royal Society of Chemistry |
subjects | Additive manufacturing Bismuth tellurides Body temperature Bulk density Decoupling Electrical conductivity Electrical resistivity Energy harvesting Fabrication High temperature Manufacturing MXenes Nanosheets Rare earth elements Room temperature Seebeck effect Sustainable materials Thermal conductivity Thermoelectric generators Thermoelectric materials |
title | Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20and%20environmentally%20friendly%20MXene-tetrahedrites%20for%20next-generation%20flexible%20thermoelectrics&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Banerjee,%20Priyanshu&rft.date=2025-01-01&rft.volume=13&rft.issue=1&rft.spage=654&rft.epage=668&rft.pages=654-668&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta05056h&rft_dat=%3Cproquest_rsc_p%3E3145640677%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p135t-9c751bf589a8655c8b2a707b305ff67400fb1dfeed97a092ec2ecfe6caf63f943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145640677&rft_id=info:pmid/&rfr_iscdi=true |