Loading…

Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics

Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. Additive manufacturing has been investigated as a more time-, energy- and cost-efficient method that offers g...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2025-01, Vol.13 (1), p.654-668
Main Authors: Banerjee, Priyanshu, Huang, Jiyuan, Lombardo, Jacob, Ambade, Swapnil B, Ambade, Rohan B, Han, Tae Hee, Kulkarni, Srushti, Sengupta, Shreyasi, Rosenzweig, Zeev, Fairbrother, Howard, Li, Sichao, Shin, Sunmi, Madan, Deepa
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 668
container_issue 1
container_start_page 654
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 13
creator Banerjee, Priyanshu
Huang, Jiyuan
Lombardo, Jacob
Ambade, Swapnil B
Ambade, Rohan B
Han, Tae Hee
Kulkarni, Srushti
Sengupta, Shreyasi
Rosenzweig, Zeev
Fairbrother, Howard
Li, Sichao
Shin, Sunmi
Madan, Deepa
description Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. Additive manufacturing has been investigated as a more time-, energy- and cost-efficient method that offers greater flexibility than traditional manufacturing techniques. Additionally, tetrahedrites are promising thermoelectric materials in high-temperature applications because they are non-toxic and earth-abundant. Herein, this work demonstrates the fabrication of scalable and sustainable Cu 12 Sb 4 S 13 (CAS) based composite films and flexible TEG devices (f-TEGs) with 2D MXene nanosheets using a low-thermal budget additive manufacturing approach for room temperature applications. 2D MXene nanosheets introduced energy-barrier scattering and nanoscale features to effectively increase the room-temperature ZT to 0.22, 10% higher than bulk CAS, by decoupling electrical conductivity, Seebeck coefficient, and thermal conductivity. CAS and 2D MXenes were found to be environmentally safe through a bacterial viability study. The process is used to create a 5-leg f-TEG device producing a power of 5.3 μW and a power density of 140 μW cm −2 at a Δ T of 25 K. Therefore, this work demonstrates that combining scalable and sustainable materials and methods is an effective strategy for high-performance room-temperature f-TEGs that could potentially harvest the low waste heat energy of the human body. Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride.
doi_str_mv 10.1039/d4ta05056h
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_3145640677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145640677</sourcerecordid><originalsourceid>FETCH-LOGICAL-p135t-9c751bf589a8655c8b2a707b305ff67400fb1dfeed97a092ec2ecfe6caf63f943</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWGov3oUFz6vZzSbZHKX4BRUPKnhbZrMTm5Jma5JK-98bqejwYH4wj_dgCDmv6FVFmboemgSUUy6WR2RSZyplo8TxH7ftKZnFuKJ5WkqFUhNiXjQ46B0W4IcC_ZcNo1-jT-DcvjDBoh8yPL2jxzJhCrDEIdiEsTBjKDzuUvmRbwGSHX1hHO7sT1paYliP6FCnYHU8IycGXMTZ756St7vb1_lDuXi-f5zfLMpNxXgqlZa86g1vFbSCc932NUgqe0a5MUI2lJq-GgzioCRQVaPOMig0GMGMatiUXB5yN2H83GJM3WrcBp8rO1Y1XDRUSJldFwdXiLrbBLuGsO_-v8e-AYomZZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145640677</pqid></control><display><type>article</type><title>Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics</title><source>Royal Society of Chemistry</source><creator>Banerjee, Priyanshu ; Huang, Jiyuan ; Lombardo, Jacob ; Ambade, Swapnil B ; Ambade, Rohan B ; Han, Tae Hee ; Kulkarni, Srushti ; Sengupta, Shreyasi ; Rosenzweig, Zeev ; Fairbrother, Howard ; Li, Sichao ; Shin, Sunmi ; Madan, Deepa</creator><creatorcontrib>Banerjee, Priyanshu ; Huang, Jiyuan ; Lombardo, Jacob ; Ambade, Swapnil B ; Ambade, Rohan B ; Han, Tae Hee ; Kulkarni, Srushti ; Sengupta, Shreyasi ; Rosenzweig, Zeev ; Fairbrother, Howard ; Li, Sichao ; Shin, Sunmi ; Madan, Deepa</creatorcontrib><description>Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. Additive manufacturing has been investigated as a more time-, energy- and cost-efficient method that offers greater flexibility than traditional manufacturing techniques. Additionally, tetrahedrites are promising thermoelectric materials in high-temperature applications because they are non-toxic and earth-abundant. Herein, this work demonstrates the fabrication of scalable and sustainable Cu 12 Sb 4 S 13 (CAS) based composite films and flexible TEG devices (f-TEGs) with 2D MXene nanosheets using a low-thermal budget additive manufacturing approach for room temperature applications. 2D MXene nanosheets introduced energy-barrier scattering and nanoscale features to effectively increase the room-temperature ZT to 0.22, 10% higher than bulk CAS, by decoupling electrical conductivity, Seebeck coefficient, and thermal conductivity. CAS and 2D MXenes were found to be environmentally safe through a bacterial viability study. The process is used to create a 5-leg f-TEG device producing a power of 5.3 μW and a power density of 140 μW cm −2 at a Δ T of 25 K. Therefore, this work demonstrates that combining scalable and sustainable materials and methods is an effective strategy for high-performance room-temperature f-TEGs that could potentially harvest the low waste heat energy of the human body. Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta05056h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Additive manufacturing ; Bismuth tellurides ; Body temperature ; Bulk density ; Decoupling ; Electrical conductivity ; Electrical resistivity ; Energy harvesting ; Fabrication ; High temperature ; Manufacturing ; MXenes ; Nanosheets ; Rare earth elements ; Room temperature ; Seebeck effect ; Sustainable materials ; Thermal conductivity ; Thermoelectric generators ; Thermoelectric materials</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2025-01, Vol.13 (1), p.654-668</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Banerjee, Priyanshu</creatorcontrib><creatorcontrib>Huang, Jiyuan</creatorcontrib><creatorcontrib>Lombardo, Jacob</creatorcontrib><creatorcontrib>Ambade, Swapnil B</creatorcontrib><creatorcontrib>Ambade, Rohan B</creatorcontrib><creatorcontrib>Han, Tae Hee</creatorcontrib><creatorcontrib>Kulkarni, Srushti</creatorcontrib><creatorcontrib>Sengupta, Shreyasi</creatorcontrib><creatorcontrib>Rosenzweig, Zeev</creatorcontrib><creatorcontrib>Fairbrother, Howard</creatorcontrib><creatorcontrib>Li, Sichao</creatorcontrib><creatorcontrib>Shin, Sunmi</creatorcontrib><creatorcontrib>Madan, Deepa</creatorcontrib><title>Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. Additive manufacturing has been investigated as a more time-, energy- and cost-efficient method that offers greater flexibility than traditional manufacturing techniques. Additionally, tetrahedrites are promising thermoelectric materials in high-temperature applications because they are non-toxic and earth-abundant. Herein, this work demonstrates the fabrication of scalable and sustainable Cu 12 Sb 4 S 13 (CAS) based composite films and flexible TEG devices (f-TEGs) with 2D MXene nanosheets using a low-thermal budget additive manufacturing approach for room temperature applications. 2D MXene nanosheets introduced energy-barrier scattering and nanoscale features to effectively increase the room-temperature ZT to 0.22, 10% higher than bulk CAS, by decoupling electrical conductivity, Seebeck coefficient, and thermal conductivity. CAS and 2D MXenes were found to be environmentally safe through a bacterial viability study. The process is used to create a 5-leg f-TEG device producing a power of 5.3 μW and a power density of 140 μW cm −2 at a Δ T of 25 K. Therefore, this work demonstrates that combining scalable and sustainable materials and methods is an effective strategy for high-performance room-temperature f-TEGs that could potentially harvest the low waste heat energy of the human body. Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride.</description><subject>Additive manufacturing</subject><subject>Bismuth tellurides</subject><subject>Body temperature</subject><subject>Bulk density</subject><subject>Decoupling</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy harvesting</subject><subject>Fabrication</subject><subject>High temperature</subject><subject>Manufacturing</subject><subject>MXenes</subject><subject>Nanosheets</subject><subject>Rare earth elements</subject><subject>Room temperature</subject><subject>Seebeck effect</subject><subject>Sustainable materials</subject><subject>Thermal conductivity</subject><subject>Thermoelectric generators</subject><subject>Thermoelectric materials</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWGov3oUFz6vZzSbZHKX4BRUPKnhbZrMTm5Jma5JK-98bqejwYH4wj_dgCDmv6FVFmboemgSUUy6WR2RSZyplo8TxH7ftKZnFuKJ5WkqFUhNiXjQ46B0W4IcC_ZcNo1-jT-DcvjDBoh8yPL2jxzJhCrDEIdiEsTBjKDzuUvmRbwGSHX1hHO7sT1paYliP6FCnYHU8IycGXMTZ756St7vb1_lDuXi-f5zfLMpNxXgqlZa86g1vFbSCc932NUgqe0a5MUI2lJq-GgzioCRQVaPOMig0GMGMatiUXB5yN2H83GJM3WrcBp8rO1Y1XDRUSJldFwdXiLrbBLuGsO_-v8e-AYomZZY</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Banerjee, Priyanshu</creator><creator>Huang, Jiyuan</creator><creator>Lombardo, Jacob</creator><creator>Ambade, Swapnil B</creator><creator>Ambade, Rohan B</creator><creator>Han, Tae Hee</creator><creator>Kulkarni, Srushti</creator><creator>Sengupta, Shreyasi</creator><creator>Rosenzweig, Zeev</creator><creator>Fairbrother, Howard</creator><creator>Li, Sichao</creator><creator>Shin, Sunmi</creator><creator>Madan, Deepa</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20250101</creationdate><title>Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics</title><author>Banerjee, Priyanshu ; Huang, Jiyuan ; Lombardo, Jacob ; Ambade, Swapnil B ; Ambade, Rohan B ; Han, Tae Hee ; Kulkarni, Srushti ; Sengupta, Shreyasi ; Rosenzweig, Zeev ; Fairbrother, Howard ; Li, Sichao ; Shin, Sunmi ; Madan, Deepa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p135t-9c751bf589a8655c8b2a707b305ff67400fb1dfeed97a092ec2ecfe6caf63f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Additive manufacturing</topic><topic>Bismuth tellurides</topic><topic>Body temperature</topic><topic>Bulk density</topic><topic>Decoupling</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy harvesting</topic><topic>Fabrication</topic><topic>High temperature</topic><topic>Manufacturing</topic><topic>MXenes</topic><topic>Nanosheets</topic><topic>Rare earth elements</topic><topic>Room temperature</topic><topic>Seebeck effect</topic><topic>Sustainable materials</topic><topic>Thermal conductivity</topic><topic>Thermoelectric generators</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Priyanshu</creatorcontrib><creatorcontrib>Huang, Jiyuan</creatorcontrib><creatorcontrib>Lombardo, Jacob</creatorcontrib><creatorcontrib>Ambade, Swapnil B</creatorcontrib><creatorcontrib>Ambade, Rohan B</creatorcontrib><creatorcontrib>Han, Tae Hee</creatorcontrib><creatorcontrib>Kulkarni, Srushti</creatorcontrib><creatorcontrib>Sengupta, Shreyasi</creatorcontrib><creatorcontrib>Rosenzweig, Zeev</creatorcontrib><creatorcontrib>Fairbrother, Howard</creatorcontrib><creatorcontrib>Li, Sichao</creatorcontrib><creatorcontrib>Shin, Sunmi</creatorcontrib><creatorcontrib>Madan, Deepa</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Priyanshu</au><au>Huang, Jiyuan</au><au>Lombardo, Jacob</au><au>Ambade, Swapnil B</au><au>Ambade, Rohan B</au><au>Han, Tae Hee</au><au>Kulkarni, Srushti</au><au>Sengupta, Shreyasi</au><au>Rosenzweig, Zeev</au><au>Fairbrother, Howard</au><au>Li, Sichao</au><au>Shin, Sunmi</au><au>Madan, Deepa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>13</volume><issue>1</issue><spage>654</spage><epage>668</epage><pages>654-668</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride. Additive manufacturing has been investigated as a more time-, energy- and cost-efficient method that offers greater flexibility than traditional manufacturing techniques. Additionally, tetrahedrites are promising thermoelectric materials in high-temperature applications because they are non-toxic and earth-abundant. Herein, this work demonstrates the fabrication of scalable and sustainable Cu 12 Sb 4 S 13 (CAS) based composite films and flexible TEG devices (f-TEGs) with 2D MXene nanosheets using a low-thermal budget additive manufacturing approach for room temperature applications. 2D MXene nanosheets introduced energy-barrier scattering and nanoscale features to effectively increase the room-temperature ZT to 0.22, 10% higher than bulk CAS, by decoupling electrical conductivity, Seebeck coefficient, and thermal conductivity. CAS and 2D MXenes were found to be environmentally safe through a bacterial viability study. The process is used to create a 5-leg f-TEG device producing a power of 5.3 μW and a power density of 140 μW cm −2 at a Δ T of 25 K. Therefore, this work demonstrates that combining scalable and sustainable materials and methods is an effective strategy for high-performance room-temperature f-TEGs that could potentially harvest the low waste heat energy of the human body. Traditional thermoelectric generators (TEGs) face scalability challenges due to high-temperature, long-duration curing processes and rare-earth/toxic chalcogenides such as bismuth telluride.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta05056h</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2025-01, Vol.13 (1), p.654-668
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3145640677
source Royal Society of Chemistry
subjects Additive manufacturing
Bismuth tellurides
Body temperature
Bulk density
Decoupling
Electrical conductivity
Electrical resistivity
Energy harvesting
Fabrication
High temperature
Manufacturing
MXenes
Nanosheets
Rare earth elements
Room temperature
Seebeck effect
Sustainable materials
Thermal conductivity
Thermoelectric generators
Thermoelectric materials
title Scalable and environmentally friendly MXene-tetrahedrites for next-generation flexible thermoelectrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20and%20environmentally%20friendly%20MXene-tetrahedrites%20for%20next-generation%20flexible%20thermoelectrics&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Banerjee,%20Priyanshu&rft.date=2025-01-01&rft.volume=13&rft.issue=1&rft.spage=654&rft.epage=668&rft.pages=654-668&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta05056h&rft_dat=%3Cproquest_rsc_p%3E3145640677%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p135t-9c751bf589a8655c8b2a707b305ff67400fb1dfeed97a092ec2ecfe6caf63f943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145640677&rft_id=info:pmid/&rfr_iscdi=true