Loading…
Environmental impact assessment of manufacturing seawater desalination technology using life cycle assessment
The seawater desalination technology, named WEFO (Water with Electrolysis, Filtration, and Ozonation), holds significant potential for addressing clean water scarcity in coastal areas. This study employs Life Cycle Assessment (LCA) to evaluate the environmental impact of producing the WEFO device. T...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2024-12, Vol.1414 (1), p.012053 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | 012053 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 1414 |
creator | Putri, V Z E Wahyono, Y Ariyanto, N Ridlo, R Suryaningtyas, A D Hakim, M R F Anisah Lestari, M C Sundari Prihatin, A L Kumalasari, I Panggabean, L P Novianti, E D |
description | The seawater desalination technology, named WEFO (Water with Electrolysis, Filtration, and Ozonation), holds significant potential for addressing clean water scarcity in coastal areas. This study employs Life Cycle Assessment (LCA) to evaluate the environmental impact of producing the WEFO device. The LCA results indicate notable environmental impacts, mostly attributable to using stainless steel and aluminum alloy. Stainless steel contributes 72.81% to abiotic depletion, 85.54% to acidification, 47.64% to eutrophication, 79.87% to freshwater ecotoxicity, 81.05% to terrestrial ecotoxicity, and 81.40% to photochemical oxidation. Meanwhile, aluminum alloy is responsible for 57.48% of global warming and 64.10% of ozone layer depletion. The manufacturing process of these materials emits pollutants that damage air and water quality and contributes to climate change and ecosystem disturbance. To mitigate these impacts, it is advisable to decrease the utilization of materials with significant environmental consequences in components such as wheel plates, faucets, and frames, replacing them with more environmentally friendly alternatives. Implementing these alternatives is expected to make WEFO technology more sustainable and provide an environmentally friendly solution to clean water scarcity in coastal areas while preserving human and ecosystem health. |
doi_str_mv | 10.1088/1755-1315/1414/1/012053 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3145732775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145732775</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1065-9d6c9bc5f0b257cae7e96b6e2722a8c68dd03077b8b11e7ded92960b3b1fc9193</originalsourceid><addsrcrecordid>eNptkU1LxDAQhoMouK7-BgOePNRmmqZpjrLUD1jwoJ5DmqZrljapTavsv7dlZVXwNMM7z8ww7yB0CeQGSJ7HwBmLgAKLIYU0hphAQhg9QotD5fiQE36KzkLYEpLxlIoFagv3YXvvWuMG1WDbdkoPWIVgQpg17GvcKjfWkzz21m1wMOpTDabHlQmqsU4N1js8GP3mfOM3OzyGGWtsbbDe6cb8mnaOTmrVBHPxHZfo9a54WT1E66f7x9XtOrJAMhaJKtOi1KwmZcK4VoYbkZWZSXiSqFxneVWR6RRe5iWA4ZWpRCIyUtISai1A0CW62s_tev8-mjDIrR97N62UFFLGacI5m6jrPWV99wMUxbOcnZQg907Krqonlv7DApHzD-Tsrpyd_ttJvwAeknsD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145732775</pqid></control><display><type>article</type><title>Environmental impact assessment of manufacturing seawater desalination technology using life cycle assessment</title><source>Publicly Available Content (ProQuest)</source><creator>Putri, V Z E ; Wahyono, Y ; Ariyanto, N ; Ridlo, R ; Suryaningtyas, A D ; Hakim, M R F ; Anisah ; Lestari, M C ; Sundari ; Prihatin, A L ; Kumalasari, I ; Panggabean, L P ; Novianti, E D</creator><creatorcontrib>Putri, V Z E ; Wahyono, Y ; Ariyanto, N ; Ridlo, R ; Suryaningtyas, A D ; Hakim, M R F ; Anisah ; Lestari, M C ; Sundari ; Prihatin, A L ; Kumalasari, I ; Panggabean, L P ; Novianti, E D</creatorcontrib><description>The seawater desalination technology, named WEFO (Water with Electrolysis, Filtration, and Ozonation), holds significant potential for addressing clean water scarcity in coastal areas. This study employs Life Cycle Assessment (LCA) to evaluate the environmental impact of producing the WEFO device. The LCA results indicate notable environmental impacts, mostly attributable to using stainless steel and aluminum alloy. Stainless steel contributes 72.81% to abiotic depletion, 85.54% to acidification, 47.64% to eutrophication, 79.87% to freshwater ecotoxicity, 81.05% to terrestrial ecotoxicity, and 81.40% to photochemical oxidation. Meanwhile, aluminum alloy is responsible for 57.48% of global warming and 64.10% of ozone layer depletion. The manufacturing process of these materials emits pollutants that damage air and water quality and contributes to climate change and ecosystem disturbance. To mitigate these impacts, it is advisable to decrease the utilization of materials with significant environmental consequences in components such as wheel plates, faucets, and frames, replacing them with more environmentally friendly alternatives. Implementing these alternatives is expected to make WEFO technology more sustainable and provide an environmentally friendly solution to clean water scarcity in coastal areas while preserving human and ecosystem health.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/1414/1/012053</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acidification ; Aluminum ; Aluminum alloys ; Aluminum base alloys ; Climate change ; Coastal waters ; Coastal zone ; Coasts ; Desalination ; Ecosystem disturbance ; Electrolysis ; Environmental impact ; Environmental impact assessment ; Eutrophication ; Global warming ; Life cycle analysis ; Life cycle assessment ; Life cycles ; Manufacturing ; Manufacturing industry ; Oxidation ; Ozonation ; Ozone depletion ; Ozone layer ; Ozonosphere ; Photochemicals ; Seawater ; Stainless steel ; Stainless steels ; Technology assessment ; Water damage ; Water purification ; Water quality ; Water scarcity</subject><ispartof>IOP conference series. Earth and environmental science, 2024-12, Vol.1414 (1), p.012053</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3145732775?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Putri, V Z E</creatorcontrib><creatorcontrib>Wahyono, Y</creatorcontrib><creatorcontrib>Ariyanto, N</creatorcontrib><creatorcontrib>Ridlo, R</creatorcontrib><creatorcontrib>Suryaningtyas, A D</creatorcontrib><creatorcontrib>Hakim, M R F</creatorcontrib><creatorcontrib>Anisah</creatorcontrib><creatorcontrib>Lestari, M C</creatorcontrib><creatorcontrib>Sundari</creatorcontrib><creatorcontrib>Prihatin, A L</creatorcontrib><creatorcontrib>Kumalasari, I</creatorcontrib><creatorcontrib>Panggabean, L P</creatorcontrib><creatorcontrib>Novianti, E D</creatorcontrib><title>Environmental impact assessment of manufacturing seawater desalination technology using life cycle assessment</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>The seawater desalination technology, named WEFO (Water with Electrolysis, Filtration, and Ozonation), holds significant potential for addressing clean water scarcity in coastal areas. This study employs Life Cycle Assessment (LCA) to evaluate the environmental impact of producing the WEFO device. The LCA results indicate notable environmental impacts, mostly attributable to using stainless steel and aluminum alloy. Stainless steel contributes 72.81% to abiotic depletion, 85.54% to acidification, 47.64% to eutrophication, 79.87% to freshwater ecotoxicity, 81.05% to terrestrial ecotoxicity, and 81.40% to photochemical oxidation. Meanwhile, aluminum alloy is responsible for 57.48% of global warming and 64.10% of ozone layer depletion. The manufacturing process of these materials emits pollutants that damage air and water quality and contributes to climate change and ecosystem disturbance. To mitigate these impacts, it is advisable to decrease the utilization of materials with significant environmental consequences in components such as wheel plates, faucets, and frames, replacing them with more environmentally friendly alternatives. Implementing these alternatives is expected to make WEFO technology more sustainable and provide an environmentally friendly solution to clean water scarcity in coastal areas while preserving human and ecosystem health.</description><subject>Acidification</subject><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Climate change</subject><subject>Coastal waters</subject><subject>Coastal zone</subject><subject>Coasts</subject><subject>Desalination</subject><subject>Ecosystem disturbance</subject><subject>Electrolysis</subject><subject>Environmental impact</subject><subject>Environmental impact assessment</subject><subject>Eutrophication</subject><subject>Global warming</subject><subject>Life cycle analysis</subject><subject>Life cycle assessment</subject><subject>Life cycles</subject><subject>Manufacturing</subject><subject>Manufacturing industry</subject><subject>Oxidation</subject><subject>Ozonation</subject><subject>Ozone depletion</subject><subject>Ozone layer</subject><subject>Ozonosphere</subject><subject>Photochemicals</subject><subject>Seawater</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Technology assessment</subject><subject>Water damage</subject><subject>Water purification</subject><subject>Water quality</subject><subject>Water scarcity</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkU1LxDAQhoMouK7-BgOePNRmmqZpjrLUD1jwoJ5DmqZrljapTavsv7dlZVXwNMM7z8ww7yB0CeQGSJ7HwBmLgAKLIYU0hphAQhg9QotD5fiQE36KzkLYEpLxlIoFagv3YXvvWuMG1WDbdkoPWIVgQpg17GvcKjfWkzz21m1wMOpTDabHlQmqsU4N1js8GP3mfOM3OzyGGWtsbbDe6cb8mnaOTmrVBHPxHZfo9a54WT1E66f7x9XtOrJAMhaJKtOi1KwmZcK4VoYbkZWZSXiSqFxneVWR6RRe5iWA4ZWpRCIyUtISai1A0CW62s_tev8-mjDIrR97N62UFFLGacI5m6jrPWV99wMUxbOcnZQg907Krqonlv7DApHzD-Tsrpyd_ttJvwAeknsD</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Putri, V Z E</creator><creator>Wahyono, Y</creator><creator>Ariyanto, N</creator><creator>Ridlo, R</creator><creator>Suryaningtyas, A D</creator><creator>Hakim, M R F</creator><creator>Anisah</creator><creator>Lestari, M C</creator><creator>Sundari</creator><creator>Prihatin, A L</creator><creator>Kumalasari, I</creator><creator>Panggabean, L P</creator><creator>Novianti, E D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20241201</creationdate><title>Environmental impact assessment of manufacturing seawater desalination technology using life cycle assessment</title><author>Putri, V Z E ; Wahyono, Y ; Ariyanto, N ; Ridlo, R ; Suryaningtyas, A D ; Hakim, M R F ; Anisah ; Lestari, M C ; Sundari ; Prihatin, A L ; Kumalasari, I ; Panggabean, L P ; Novianti, E D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1065-9d6c9bc5f0b257cae7e96b6e2722a8c68dd03077b8b11e7ded92960b3b1fc9193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidification</topic><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Climate change</topic><topic>Coastal waters</topic><topic>Coastal zone</topic><topic>Coasts</topic><topic>Desalination</topic><topic>Ecosystem disturbance</topic><topic>Electrolysis</topic><topic>Environmental impact</topic><topic>Environmental impact assessment</topic><topic>Eutrophication</topic><topic>Global warming</topic><topic>Life cycle analysis</topic><topic>Life cycle assessment</topic><topic>Life cycles</topic><topic>Manufacturing</topic><topic>Manufacturing industry</topic><topic>Oxidation</topic><topic>Ozonation</topic><topic>Ozone depletion</topic><topic>Ozone layer</topic><topic>Ozonosphere</topic><topic>Photochemicals</topic><topic>Seawater</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Technology assessment</topic><topic>Water damage</topic><topic>Water purification</topic><topic>Water quality</topic><topic>Water scarcity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Putri, V Z E</creatorcontrib><creatorcontrib>Wahyono, Y</creatorcontrib><creatorcontrib>Ariyanto, N</creatorcontrib><creatorcontrib>Ridlo, R</creatorcontrib><creatorcontrib>Suryaningtyas, A D</creatorcontrib><creatorcontrib>Hakim, M R F</creatorcontrib><creatorcontrib>Anisah</creatorcontrib><creatorcontrib>Lestari, M C</creatorcontrib><creatorcontrib>Sundari</creatorcontrib><creatorcontrib>Prihatin, A L</creatorcontrib><creatorcontrib>Kumalasari, I</creatorcontrib><creatorcontrib>Panggabean, L P</creatorcontrib><creatorcontrib>Novianti, E D</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Putri, V Z E</au><au>Wahyono, Y</au><au>Ariyanto, N</au><au>Ridlo, R</au><au>Suryaningtyas, A D</au><au>Hakim, M R F</au><au>Anisah</au><au>Lestari, M C</au><au>Sundari</au><au>Prihatin, A L</au><au>Kumalasari, I</au><au>Panggabean, L P</au><au>Novianti, E D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental impact assessment of manufacturing seawater desalination technology using life cycle assessment</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>1414</volume><issue>1</issue><spage>012053</spage><pages>012053-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>The seawater desalination technology, named WEFO (Water with Electrolysis, Filtration, and Ozonation), holds significant potential for addressing clean water scarcity in coastal areas. This study employs Life Cycle Assessment (LCA) to evaluate the environmental impact of producing the WEFO device. The LCA results indicate notable environmental impacts, mostly attributable to using stainless steel and aluminum alloy. Stainless steel contributes 72.81% to abiotic depletion, 85.54% to acidification, 47.64% to eutrophication, 79.87% to freshwater ecotoxicity, 81.05% to terrestrial ecotoxicity, and 81.40% to photochemical oxidation. Meanwhile, aluminum alloy is responsible for 57.48% of global warming and 64.10% of ozone layer depletion. The manufacturing process of these materials emits pollutants that damage air and water quality and contributes to climate change and ecosystem disturbance. To mitigate these impacts, it is advisable to decrease the utilization of materials with significant environmental consequences in components such as wheel plates, faucets, and frames, replacing them with more environmentally friendly alternatives. Implementing these alternatives is expected to make WEFO technology more sustainable and provide an environmentally friendly solution to clean water scarcity in coastal areas while preserving human and ecosystem health.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/1414/1/012053</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2024-12, Vol.1414 (1), p.012053 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_3145732775 |
source | Publicly Available Content (ProQuest) |
subjects | Acidification Aluminum Aluminum alloys Aluminum base alloys Climate change Coastal waters Coastal zone Coasts Desalination Ecosystem disturbance Electrolysis Environmental impact Environmental impact assessment Eutrophication Global warming Life cycle analysis Life cycle assessment Life cycles Manufacturing Manufacturing industry Oxidation Ozonation Ozone depletion Ozone layer Ozonosphere Photochemicals Seawater Stainless steel Stainless steels Technology assessment Water damage Water purification Water quality Water scarcity |
title | Environmental impact assessment of manufacturing seawater desalination technology using life cycle assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20impact%20assessment%20of%20manufacturing%20seawater%20desalination%20technology%20using%20life%20cycle%20assessment&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Putri,%20V%20Z%20E&rft.date=2024-12-01&rft.volume=1414&rft.issue=1&rft.spage=012053&rft.pages=012053-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/1414/1/012053&rft_dat=%3Cproquest_iop_j%3E3145732775%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1065-9d6c9bc5f0b257cae7e96b6e2722a8c68dd03077b8b11e7ded92960b3b1fc9193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145732775&rft_id=info:pmid/&rfr_iscdi=true |