Loading…
Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor
Gate oxide reliability has become a significant concern for emerging technology nodes, particularly as transistors continue to scale down. Quantum confinement effects in nano-scaled devices complicate the trapping dynamics near the interface. Although these behaviors can be modeled using density-fun...
Saved in:
Published in: | Journal of applied physics 2024-12, Vol.136 (23) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c217t-1c5239586e2c570e63c6d5f3c4af9365dbbcd665573f3a74210b4c5a4d722a3c3 |
container_end_page | |
container_issue | 23 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 136 |
creator | Li, Xufan Huang, Shijie Wang, Jiawei Wang, Lingfei Li, Ling |
description | Gate oxide reliability has become a significant concern for emerging technology nodes, particularly as transistors continue to scale down. Quantum confinement effects in nano-scaled devices complicate the trapping dynamics near the interface. Although these behaviors can be modeled using density-functional theory (DFT) and Marcus theory, a more efficient method is essential for characterizing critical reliability issues at the nano-device level. This paper presents a pioneering numerical study that employs a Bohm potential and Marcus theory, examining carrier concentration decay near the channel/oxide interface to evaluate the charge-trapping process using density-gradient coupled Poisson equations. This approach incorporates vital quantum corrections to classical studies. Key physics-based parameters are initially derived from DFT calculations and subsequently calibrated against experimental data. Our findings indicate that charge trap rates decrease with carrier density at the interface, ultimately affecting the device's threshold voltage shift. |
doi_str_mv | 10.1063/5.0229625 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3145864645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145864645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-1c5239586e2c570e63c6d5f3c4af9365dbbcd665573f3a74210b4c5a4d722a3c3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqLpPMzFKKVaHgRtfDmVxKyjRpkwzYhe_u9LJ2dQ6c7_8O_AjdUzKjRPJnMSOMNZKJCzShpG6KSghyiSaEMFrUTdVco5uU1oRQWvNmgn4Xg9ewMT5Dj8fVxJTBa-dXOFi8G8DnYYNV8NZ5c8CwsdaojIPHK8gGhx-nDY6md9C53uU9tiEeTwX0PYYYRiu2zvS6OEdzBJ9cyiHeoisLfTJ35zlF34vXr_l7sfx8-5i_LAvFaJULqgTjjailYUpUxEiupBaWqxJsw6XQXae0lEJU3HKoSkZJVyoBpa4YA674FD2cvNsYdoNJuV2HIfrxZctpOYpLWYqRejxRKoaUorHtNroNxH1LSXtotxXtud2RfTqxSbkM2QX_D_wHIy97pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145864645</pqid></control><display><type>article</type><title>Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Li, Xufan ; Huang, Shijie ; Wang, Jiawei ; Wang, Lingfei ; Li, Ling</creator><creatorcontrib>Li, Xufan ; Huang, Shijie ; Wang, Jiawei ; Wang, Lingfei ; Li, Ling</creatorcontrib><description>Gate oxide reliability has become a significant concern for emerging technology nodes, particularly as transistors continue to scale down. Quantum confinement effects in nano-scaled devices complicate the trapping dynamics near the interface. Although these behaviors can be modeled using density-functional theory (DFT) and Marcus theory, a more efficient method is essential for characterizing critical reliability issues at the nano-device level. This paper presents a pioneering numerical study that employs a Bohm potential and Marcus theory, examining carrier concentration decay near the channel/oxide interface to evaluate the charge-trapping process using density-gradient coupled Poisson equations. This approach incorporates vital quantum corrections to classical studies. Key physics-based parameters are initially derived from DFT calculations and subsequently calibrated against experimental data. Our findings indicate that charge trap rates decrease with carrier density at the interface, ultimately affecting the device's threshold voltage shift.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0229625</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carrier density ; Concentration gradient ; Current carriers ; Density functional theory ; Field effect transistors ; Nanotechnology devices ; Poisson equation ; Quantum confinement ; Reliability ; Scale (corrosion) ; Semiconductor devices ; Threshold voltage ; Trapping</subject><ispartof>Journal of applied physics, 2024-12, Vol.136 (23)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-1c5239586e2c570e63c6d5f3c4af9365dbbcd665573f3a74210b4c5a4d722a3c3</cites><orcidid>0000-0003-3579-8406 ; 0000-0002-7622-8752 ; 0009-0003-5197-1974 ; 0000-0002-3043-8447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Xufan</creatorcontrib><creatorcontrib>Huang, Shijie</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Wang, Lingfei</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><title>Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor</title><title>Journal of applied physics</title><description>Gate oxide reliability has become a significant concern for emerging technology nodes, particularly as transistors continue to scale down. Quantum confinement effects in nano-scaled devices complicate the trapping dynamics near the interface. Although these behaviors can be modeled using density-functional theory (DFT) and Marcus theory, a more efficient method is essential for characterizing critical reliability issues at the nano-device level. This paper presents a pioneering numerical study that employs a Bohm potential and Marcus theory, examining carrier concentration decay near the channel/oxide interface to evaluate the charge-trapping process using density-gradient coupled Poisson equations. This approach incorporates vital quantum corrections to classical studies. Key physics-based parameters are initially derived from DFT calculations and subsequently calibrated against experimental data. Our findings indicate that charge trap rates decrease with carrier density at the interface, ultimately affecting the device's threshold voltage shift.</description><subject>Carrier density</subject><subject>Concentration gradient</subject><subject>Current carriers</subject><subject>Density functional theory</subject><subject>Field effect transistors</subject><subject>Nanotechnology devices</subject><subject>Poisson equation</subject><subject>Quantum confinement</subject><subject>Reliability</subject><subject>Scale (corrosion)</subject><subject>Semiconductor devices</subject><subject>Threshold voltage</subject><subject>Trapping</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqLpPMzFKKVaHgRtfDmVxKyjRpkwzYhe_u9LJ2dQ6c7_8O_AjdUzKjRPJnMSOMNZKJCzShpG6KSghyiSaEMFrUTdVco5uU1oRQWvNmgn4Xg9ewMT5Dj8fVxJTBa-dXOFi8G8DnYYNV8NZ5c8CwsdaojIPHK8gGhx-nDY6md9C53uU9tiEeTwX0PYYYRiu2zvS6OEdzBJ9cyiHeoisLfTJ35zlF34vXr_l7sfx8-5i_LAvFaJULqgTjjailYUpUxEiupBaWqxJsw6XQXae0lEJU3HKoSkZJVyoBpa4YA674FD2cvNsYdoNJuV2HIfrxZctpOYpLWYqRejxRKoaUorHtNroNxH1LSXtotxXtud2RfTqxSbkM2QX_D_wHIy97pQ</recordid><startdate>20241221</startdate><enddate>20241221</enddate><creator>Li, Xufan</creator><creator>Huang, Shijie</creator><creator>Wang, Jiawei</creator><creator>Wang, Lingfei</creator><creator>Li, Ling</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3579-8406</orcidid><orcidid>https://orcid.org/0000-0002-7622-8752</orcidid><orcidid>https://orcid.org/0009-0003-5197-1974</orcidid><orcidid>https://orcid.org/0000-0002-3043-8447</orcidid></search><sort><creationdate>20241221</creationdate><title>Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor</title><author>Li, Xufan ; Huang, Shijie ; Wang, Jiawei ; Wang, Lingfei ; Li, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-1c5239586e2c570e63c6d5f3c4af9365dbbcd665573f3a74210b4c5a4d722a3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier density</topic><topic>Concentration gradient</topic><topic>Current carriers</topic><topic>Density functional theory</topic><topic>Field effect transistors</topic><topic>Nanotechnology devices</topic><topic>Poisson equation</topic><topic>Quantum confinement</topic><topic>Reliability</topic><topic>Scale (corrosion)</topic><topic>Semiconductor devices</topic><topic>Threshold voltage</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xufan</creatorcontrib><creatorcontrib>Huang, Shijie</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Wang, Lingfei</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xufan</au><au>Huang, Shijie</au><au>Wang, Jiawei</au><au>Wang, Lingfei</au><au>Li, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor</atitle><jtitle>Journal of applied physics</jtitle><date>2024-12-21</date><risdate>2024</risdate><volume>136</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Gate oxide reliability has become a significant concern for emerging technology nodes, particularly as transistors continue to scale down. Quantum confinement effects in nano-scaled devices complicate the trapping dynamics near the interface. Although these behaviors can be modeled using density-functional theory (DFT) and Marcus theory, a more efficient method is essential for characterizing critical reliability issues at the nano-device level. This paper presents a pioneering numerical study that employs a Bohm potential and Marcus theory, examining carrier concentration decay near the channel/oxide interface to evaluate the charge-trapping process using density-gradient coupled Poisson equations. This approach incorporates vital quantum corrections to classical studies. Key physics-based parameters are initially derived from DFT calculations and subsequently calibrated against experimental data. Our findings indicate that charge trap rates decrease with carrier density at the interface, ultimately affecting the device's threshold voltage shift.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0229625</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3579-8406</orcidid><orcidid>https://orcid.org/0000-0002-7622-8752</orcidid><orcidid>https://orcid.org/0009-0003-5197-1974</orcidid><orcidid>https://orcid.org/0000-0002-3043-8447</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-12, Vol.136 (23) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_3145864645 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Carrier density Concentration gradient Current carriers Density functional theory Field effect transistors Nanotechnology devices Poisson equation Quantum confinement Reliability Scale (corrosion) Semiconductor devices Threshold voltage Trapping |
title | Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20understanding%20of%20quantum%20confinement%20effect%20on%20gate%20oxide%20reliability%20for%20gate-all%20around%20field-effect%20transistor&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Li,%20Xufan&rft.date=2024-12-21&rft.volume=136&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0229625&rft_dat=%3Cproquest_cross%3E3145864645%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-1c5239586e2c570e63c6d5f3c4af9365dbbcd665573f3a74210b4c5a4d722a3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145864645&rft_id=info:pmid/&rfr_iscdi=true |