Loading…

Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor

Gate oxide reliability has become a significant concern for emerging technology nodes, particularly as transistors continue to scale down. Quantum confinement effects in nano-scaled devices complicate the trapping dynamics near the interface. Although these behaviors can be modeled using density-fun...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2024-12, Vol.136 (23)
Main Authors: Li, Xufan, Huang, Shijie, Wang, Jiawei, Wang, Lingfei, Li, Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c217t-1c5239586e2c570e63c6d5f3c4af9365dbbcd665573f3a74210b4c5a4d722a3c3
container_end_page
container_issue 23
container_start_page
container_title Journal of applied physics
container_volume 136
creator Li, Xufan
Huang, Shijie
Wang, Jiawei
Wang, Lingfei
Li, Ling
description Gate oxide reliability has become a significant concern for emerging technology nodes, particularly as transistors continue to scale down. Quantum confinement effects in nano-scaled devices complicate the trapping dynamics near the interface. Although these behaviors can be modeled using density-functional theory (DFT) and Marcus theory, a more efficient method is essential for characterizing critical reliability issues at the nano-device level. This paper presents a pioneering numerical study that employs a Bohm potential and Marcus theory, examining carrier concentration decay near the channel/oxide interface to evaluate the charge-trapping process using density-gradient coupled Poisson equations. This approach incorporates vital quantum corrections to classical studies. Key physics-based parameters are initially derived from DFT calculations and subsequently calibrated against experimental data. Our findings indicate that charge trap rates decrease with carrier density at the interface, ultimately affecting the device's threshold voltage shift.
doi_str_mv 10.1063/5.0229625
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3145864645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145864645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-1c5239586e2c570e63c6d5f3c4af9365dbbcd665573f3a74210b4c5a4d722a3c3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqLpPMzFKKVaHgRtfDmVxKyjRpkwzYhe_u9LJ2dQ6c7_8O_AjdUzKjRPJnMSOMNZKJCzShpG6KSghyiSaEMFrUTdVco5uU1oRQWvNmgn4Xg9ewMT5Dj8fVxJTBa-dXOFi8G8DnYYNV8NZ5c8CwsdaojIPHK8gGhx-nDY6md9C53uU9tiEeTwX0PYYYRiu2zvS6OEdzBJ9cyiHeoisLfTJ35zlF34vXr_l7sfx8-5i_LAvFaJULqgTjjailYUpUxEiupBaWqxJsw6XQXae0lEJU3HKoSkZJVyoBpa4YA674FD2cvNsYdoNJuV2HIfrxZctpOYpLWYqRejxRKoaUorHtNroNxH1LSXtotxXtud2RfTqxSbkM2QX_D_wHIy97pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145864645</pqid></control><display><type>article</type><title>Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Li, Xufan ; Huang, Shijie ; Wang, Jiawei ; Wang, Lingfei ; Li, Ling</creator><creatorcontrib>Li, Xufan ; Huang, Shijie ; Wang, Jiawei ; Wang, Lingfei ; Li, Ling</creatorcontrib><description>Gate oxide reliability has become a significant concern for emerging technology nodes, particularly as transistors continue to scale down. Quantum confinement effects in nano-scaled devices complicate the trapping dynamics near the interface. Although these behaviors can be modeled using density-functional theory (DFT) and Marcus theory, a more efficient method is essential for characterizing critical reliability issues at the nano-device level. This paper presents a pioneering numerical study that employs a Bohm potential and Marcus theory, examining carrier concentration decay near the channel/oxide interface to evaluate the charge-trapping process using density-gradient coupled Poisson equations. This approach incorporates vital quantum corrections to classical studies. Key physics-based parameters are initially derived from DFT calculations and subsequently calibrated against experimental data. Our findings indicate that charge trap rates decrease with carrier density at the interface, ultimately affecting the device's threshold voltage shift.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0229625</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carrier density ; Concentration gradient ; Current carriers ; Density functional theory ; Field effect transistors ; Nanotechnology devices ; Poisson equation ; Quantum confinement ; Reliability ; Scale (corrosion) ; Semiconductor devices ; Threshold voltage ; Trapping</subject><ispartof>Journal of applied physics, 2024-12, Vol.136 (23)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-1c5239586e2c570e63c6d5f3c4af9365dbbcd665573f3a74210b4c5a4d722a3c3</cites><orcidid>0000-0003-3579-8406 ; 0000-0002-7622-8752 ; 0009-0003-5197-1974 ; 0000-0002-3043-8447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Xufan</creatorcontrib><creatorcontrib>Huang, Shijie</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Wang, Lingfei</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><title>Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor</title><title>Journal of applied physics</title><description>Gate oxide reliability has become a significant concern for emerging technology nodes, particularly as transistors continue to scale down. Quantum confinement effects in nano-scaled devices complicate the trapping dynamics near the interface. Although these behaviors can be modeled using density-functional theory (DFT) and Marcus theory, a more efficient method is essential for characterizing critical reliability issues at the nano-device level. This paper presents a pioneering numerical study that employs a Bohm potential and Marcus theory, examining carrier concentration decay near the channel/oxide interface to evaluate the charge-trapping process using density-gradient coupled Poisson equations. This approach incorporates vital quantum corrections to classical studies. Key physics-based parameters are initially derived from DFT calculations and subsequently calibrated against experimental data. Our findings indicate that charge trap rates decrease with carrier density at the interface, ultimately affecting the device's threshold voltage shift.</description><subject>Carrier density</subject><subject>Concentration gradient</subject><subject>Current carriers</subject><subject>Density functional theory</subject><subject>Field effect transistors</subject><subject>Nanotechnology devices</subject><subject>Poisson equation</subject><subject>Quantum confinement</subject><subject>Reliability</subject><subject>Scale (corrosion)</subject><subject>Semiconductor devices</subject><subject>Threshold voltage</subject><subject>Trapping</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqLpPMzFKKVaHgRtfDmVxKyjRpkwzYhe_u9LJ2dQ6c7_8O_AjdUzKjRPJnMSOMNZKJCzShpG6KSghyiSaEMFrUTdVco5uU1oRQWvNmgn4Xg9ewMT5Dj8fVxJTBa-dXOFi8G8DnYYNV8NZ5c8CwsdaojIPHK8gGhx-nDY6md9C53uU9tiEeTwX0PYYYRiu2zvS6OEdzBJ9cyiHeoisLfTJ35zlF34vXr_l7sfx8-5i_LAvFaJULqgTjjailYUpUxEiupBaWqxJsw6XQXae0lEJU3HKoSkZJVyoBpa4YA674FD2cvNsYdoNJuV2HIfrxZctpOYpLWYqRejxRKoaUorHtNroNxH1LSXtotxXtud2RfTqxSbkM2QX_D_wHIy97pQ</recordid><startdate>20241221</startdate><enddate>20241221</enddate><creator>Li, Xufan</creator><creator>Huang, Shijie</creator><creator>Wang, Jiawei</creator><creator>Wang, Lingfei</creator><creator>Li, Ling</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3579-8406</orcidid><orcidid>https://orcid.org/0000-0002-7622-8752</orcidid><orcidid>https://orcid.org/0009-0003-5197-1974</orcidid><orcidid>https://orcid.org/0000-0002-3043-8447</orcidid></search><sort><creationdate>20241221</creationdate><title>Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor</title><author>Li, Xufan ; Huang, Shijie ; Wang, Jiawei ; Wang, Lingfei ; Li, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-1c5239586e2c570e63c6d5f3c4af9365dbbcd665573f3a74210b4c5a4d722a3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier density</topic><topic>Concentration gradient</topic><topic>Current carriers</topic><topic>Density functional theory</topic><topic>Field effect transistors</topic><topic>Nanotechnology devices</topic><topic>Poisson equation</topic><topic>Quantum confinement</topic><topic>Reliability</topic><topic>Scale (corrosion)</topic><topic>Semiconductor devices</topic><topic>Threshold voltage</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xufan</creatorcontrib><creatorcontrib>Huang, Shijie</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Wang, Lingfei</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xufan</au><au>Huang, Shijie</au><au>Wang, Jiawei</au><au>Wang, Lingfei</au><au>Li, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor</atitle><jtitle>Journal of applied physics</jtitle><date>2024-12-21</date><risdate>2024</risdate><volume>136</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Gate oxide reliability has become a significant concern for emerging technology nodes, particularly as transistors continue to scale down. Quantum confinement effects in nano-scaled devices complicate the trapping dynamics near the interface. Although these behaviors can be modeled using density-functional theory (DFT) and Marcus theory, a more efficient method is essential for characterizing critical reliability issues at the nano-device level. This paper presents a pioneering numerical study that employs a Bohm potential and Marcus theory, examining carrier concentration decay near the channel/oxide interface to evaluate the charge-trapping process using density-gradient coupled Poisson equations. This approach incorporates vital quantum corrections to classical studies. Key physics-based parameters are initially derived from DFT calculations and subsequently calibrated against experimental data. Our findings indicate that charge trap rates decrease with carrier density at the interface, ultimately affecting the device's threshold voltage shift.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0229625</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3579-8406</orcidid><orcidid>https://orcid.org/0000-0002-7622-8752</orcidid><orcidid>https://orcid.org/0009-0003-5197-1974</orcidid><orcidid>https://orcid.org/0000-0002-3043-8447</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-12, Vol.136 (23)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_3145864645
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Carrier density
Concentration gradient
Current carriers
Density functional theory
Field effect transistors
Nanotechnology devices
Poisson equation
Quantum confinement
Reliability
Scale (corrosion)
Semiconductor devices
Threshold voltage
Trapping
title Fundamental understanding of quantum confinement effect on gate oxide reliability for gate-all around field-effect transistor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20understanding%20of%20quantum%20confinement%20effect%20on%20gate%20oxide%20reliability%20for%20gate-all%20around%20field-effect%20transistor&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Li,%20Xufan&rft.date=2024-12-21&rft.volume=136&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0229625&rft_dat=%3Cproquest_cross%3E3145864645%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-1c5239586e2c570e63c6d5f3c4af9365dbbcd665573f3a74210b4c5a4d722a3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145864645&rft_id=info:pmid/&rfr_iscdi=true