Loading…

SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device

We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image g...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-12
Main Authors: Wu, Yushu, Zhang, Zhixing, Li, Yanyu, Xu, Yanwu, Kag, Anil, Yang, Sui, Coskun, Huseyin, Ma, Ke, Lebedev, Aleksei, Hu, Ju, Metaxas, Dimitris, Wang, Yanzhi, Tulyakov, Sergey, Ren, Jian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wu, Yushu
Zhang, Zhixing
Li, Yanyu
Xu, Yanwu
Kag, Anil
Yang, Sui
Coskun, Huseyin
Ma, Ke
Lebedev, Aleksei
Hu, Ju
Metaxas, Dimitris
Wang, Yanzhi
Tulyakov, Sergey
Ren, Jian
description We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3145904538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145904538</sourcerecordid><originalsourceid>FETCH-proquest_journals_31459045383</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oPJibK-taWZcgULzK0q-ayGZO7e8n1Q_o9B6ed0I8LkRAo5DzGfGdqxhjfLXmUgqPXBKjmiMamm1hDLaq0-YOCmI9IE2wsKaETJdo4aW7hzYfgC84sGZcz_aqa4Q9DrrABZneVO3Q_3VOlvEh3Z1o09pnj67LK9u3ZqRcBKHcsFCKSPx3vQF0pD0z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145904538</pqid></control><display><type>article</type><title>SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device</title><source>Publicly Available Content Database</source><creator>Wu, Yushu ; Zhang, Zhixing ; Li, Yanyu ; Xu, Yanwu ; Kag, Anil ; Yang, Sui ; Coskun, Huseyin ; Ma, Ke ; Lebedev, Aleksei ; Hu, Ju ; Metaxas, Dimitris ; Wang, Yanzhi ; Tulyakov, Sergey ; Ren, Jian</creator><creatorcontrib>Wu, Yushu ; Zhang, Zhixing ; Li, Yanyu ; Xu, Yanwu ; Kag, Anil ; Yang, Sui ; Coskun, Huseyin ; Ma, Ke ; Lebedev, Aleksei ; Hu, Ju ; Metaxas, Dimitris ; Wang, Yanzhi ; Tulyakov, Sergey ; Ren, Jian</creatorcontrib><description>We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Cloud computing ; Diffusion layers ; Image processing ; Image resolution ; Smartphones</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3145904538?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wu, Yushu</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Li, Yanyu</creatorcontrib><creatorcontrib>Xu, Yanwu</creatorcontrib><creatorcontrib>Kag, Anil</creatorcontrib><creatorcontrib>Yang, Sui</creatorcontrib><creatorcontrib>Coskun, Huseyin</creatorcontrib><creatorcontrib>Ma, Ke</creatorcontrib><creatorcontrib>Lebedev, Aleksei</creatorcontrib><creatorcontrib>Hu, Ju</creatorcontrib><creatorcontrib>Metaxas, Dimitris</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><title>SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device</title><title>arXiv.org</title><description>We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Diffusion layers</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Smartphones</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oPJibK-taWZcgULzK0q-ayGZO7e8n1Q_o9B6ed0I8LkRAo5DzGfGdqxhjfLXmUgqPXBKjmiMamm1hDLaq0-YOCmI9IE2wsKaETJdo4aW7hzYfgC84sGZcz_aqa4Q9DrrABZneVO3Q_3VOlvEh3Z1o09pnj67LK9u3ZqRcBKHcsFCKSPx3vQF0pD0z</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Wu, Yushu</creator><creator>Zhang, Zhixing</creator><creator>Li, Yanyu</creator><creator>Xu, Yanwu</creator><creator>Kag, Anil</creator><creator>Yang, Sui</creator><creator>Coskun, Huseyin</creator><creator>Ma, Ke</creator><creator>Lebedev, Aleksei</creator><creator>Hu, Ju</creator><creator>Metaxas, Dimitris</creator><creator>Wang, Yanzhi</creator><creator>Tulyakov, Sergey</creator><creator>Ren, Jian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241213</creationdate><title>SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device</title><author>Wu, Yushu ; Zhang, Zhixing ; Li, Yanyu ; Xu, Yanwu ; Kag, Anil ; Yang, Sui ; Coskun, Huseyin ; Ma, Ke ; Lebedev, Aleksei ; Hu, Ju ; Metaxas, Dimitris ; Wang, Yanzhi ; Tulyakov, Sergey ; Ren, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31459045383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Diffusion layers</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Smartphones</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yushu</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Li, Yanyu</creatorcontrib><creatorcontrib>Xu, Yanwu</creatorcontrib><creatorcontrib>Kag, Anil</creatorcontrib><creatorcontrib>Yang, Sui</creatorcontrib><creatorcontrib>Coskun, Huseyin</creatorcontrib><creatorcontrib>Ma, Ke</creatorcontrib><creatorcontrib>Lebedev, Aleksei</creatorcontrib><creatorcontrib>Hu, Ju</creatorcontrib><creatorcontrib>Metaxas, Dimitris</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yushu</au><au>Zhang, Zhixing</au><au>Li, Yanyu</au><au>Xu, Yanwu</au><au>Kag, Anil</au><au>Yang, Sui</au><au>Coskun, Huseyin</au><au>Ma, Ke</au><au>Lebedev, Aleksei</au><au>Hu, Ju</au><au>Metaxas, Dimitris</au><au>Wang, Yanzhi</au><au>Tulyakov, Sergey</au><au>Ren, Jian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device</atitle><jtitle>arXiv.org</jtitle><date>2024-12-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3145904538
source Publicly Available Content Database
subjects Algorithms
Cloud computing
Diffusion layers
Image processing
Image resolution
Smartphones
title SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SnapGen-V:%20Generating%20a%20Five-Second%20Video%20within%20Five%20Seconds%20on%20a%20Mobile%20Device&rft.jtitle=arXiv.org&rft.au=Wu,%20Yushu&rft.date=2024-12-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3145904538%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31459045383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145904538&rft_id=info:pmid/&rfr_iscdi=true