Loading…
SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device
We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image g...
Saved in:
Published in: | arXiv.org 2024-12 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wu, Yushu Zhang, Zhixing Li, Yanyu Xu, Yanwu Kag, Anil Yang, Sui Coskun, Huseyin Ma, Ke Lebedev, Aleksei Hu, Ju Metaxas, Dimitris Wang, Yanzhi Tulyakov, Sergey Ren, Jian |
description | We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3145904538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145904538</sourcerecordid><originalsourceid>FETCH-proquest_journals_31459045383</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oPJibK-taWZcgULzK0q-ayGZO7e8n1Q_o9B6ed0I8LkRAo5DzGfGdqxhjfLXmUgqPXBKjmiMamm1hDLaq0-YOCmI9IE2wsKaETJdo4aW7hzYfgC84sGZcz_aqa4Q9DrrABZneVO3Q_3VOlvEh3Z1o09pnj67LK9u3ZqRcBKHcsFCKSPx3vQF0pD0z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145904538</pqid></control><display><type>article</type><title>SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device</title><source>Publicly Available Content Database</source><creator>Wu, Yushu ; Zhang, Zhixing ; Li, Yanyu ; Xu, Yanwu ; Kag, Anil ; Yang, Sui ; Coskun, Huseyin ; Ma, Ke ; Lebedev, Aleksei ; Hu, Ju ; Metaxas, Dimitris ; Wang, Yanzhi ; Tulyakov, Sergey ; Ren, Jian</creator><creatorcontrib>Wu, Yushu ; Zhang, Zhixing ; Li, Yanyu ; Xu, Yanwu ; Kag, Anil ; Yang, Sui ; Coskun, Huseyin ; Ma, Ke ; Lebedev, Aleksei ; Hu, Ju ; Metaxas, Dimitris ; Wang, Yanzhi ; Tulyakov, Sergey ; Ren, Jian</creatorcontrib><description>We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Cloud computing ; Diffusion layers ; Image processing ; Image resolution ; Smartphones</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3145904538?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wu, Yushu</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Li, Yanyu</creatorcontrib><creatorcontrib>Xu, Yanwu</creatorcontrib><creatorcontrib>Kag, Anil</creatorcontrib><creatorcontrib>Yang, Sui</creatorcontrib><creatorcontrib>Coskun, Huseyin</creatorcontrib><creatorcontrib>Ma, Ke</creatorcontrib><creatorcontrib>Lebedev, Aleksei</creatorcontrib><creatorcontrib>Hu, Ju</creatorcontrib><creatorcontrib>Metaxas, Dimitris</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><title>SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device</title><title>arXiv.org</title><description>We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Diffusion layers</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Smartphones</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oPJibK-taWZcgULzK0q-ayGZO7e8n1Q_o9B6ed0I8LkRAo5DzGfGdqxhjfLXmUgqPXBKjmiMamm1hDLaq0-YOCmI9IE2wsKaETJdo4aW7hzYfgC84sGZcz_aqa4Q9DrrABZneVO3Q_3VOlvEh3Z1o09pnj67LK9u3ZqRcBKHcsFCKSPx3vQF0pD0z</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Wu, Yushu</creator><creator>Zhang, Zhixing</creator><creator>Li, Yanyu</creator><creator>Xu, Yanwu</creator><creator>Kag, Anil</creator><creator>Yang, Sui</creator><creator>Coskun, Huseyin</creator><creator>Ma, Ke</creator><creator>Lebedev, Aleksei</creator><creator>Hu, Ju</creator><creator>Metaxas, Dimitris</creator><creator>Wang, Yanzhi</creator><creator>Tulyakov, Sergey</creator><creator>Ren, Jian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241213</creationdate><title>SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device</title><author>Wu, Yushu ; Zhang, Zhixing ; Li, Yanyu ; Xu, Yanwu ; Kag, Anil ; Yang, Sui ; Coskun, Huseyin ; Ma, Ke ; Lebedev, Aleksei ; Hu, Ju ; Metaxas, Dimitris ; Wang, Yanzhi ; Tulyakov, Sergey ; Ren, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31459045383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Diffusion layers</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Smartphones</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yushu</creatorcontrib><creatorcontrib>Zhang, Zhixing</creatorcontrib><creatorcontrib>Li, Yanyu</creatorcontrib><creatorcontrib>Xu, Yanwu</creatorcontrib><creatorcontrib>Kag, Anil</creatorcontrib><creatorcontrib>Yang, Sui</creatorcontrib><creatorcontrib>Coskun, Huseyin</creatorcontrib><creatorcontrib>Ma, Ke</creatorcontrib><creatorcontrib>Lebedev, Aleksei</creatorcontrib><creatorcontrib>Hu, Ju</creatorcontrib><creatorcontrib>Metaxas, Dimitris</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yushu</au><au>Zhang, Zhixing</au><au>Li, Yanyu</au><au>Xu, Yanwu</au><au>Kag, Anil</au><au>Yang, Sui</au><au>Coskun, Huseyin</au><au>Ma, Ke</au><au>Lebedev, Aleksei</au><au>Hu, Ju</au><au>Metaxas, Dimitris</au><au>Wang, Yanzhi</au><au>Tulyakov, Sergey</au><au>Ren, Jian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device</atitle><jtitle>arXiv.org</jtitle><date>2024-12-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3145904538 |
source | Publicly Available Content Database |
subjects | Algorithms Cloud computing Diffusion layers Image processing Image resolution Smartphones |
title | SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SnapGen-V:%20Generating%20a%20Five-Second%20Video%20within%20Five%20Seconds%20on%20a%20Mobile%20Device&rft.jtitle=arXiv.org&rft.au=Wu,%20Yushu&rft.date=2024-12-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3145904538%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31459045383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145904538&rft_id=info:pmid/&rfr_iscdi=true |