Loading…

A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid

A systematic mechanistic study employing rate constant (kobs) kinetics measurements, linear free‐energy relationship, hydrogen kinetic isotope effect and rate law, as well as the Density Functional Theory (DFT) approach (M06‐2x/6‐311G(d,p)) for the oxidation of diverse substituted benzyl alcohols wi...

Full description

Saved in:
Bibliographic Details
Published in:European journal of organic chemistry 2024-11, Vol.27 (46), p.n/a
Main Authors: Santos, Carlos V. P., Mattos, Marcio C. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2024-be4228660ca2236e75ce1e57bf4afd4cf33257eb1e17f8cda5499df3014665fe3
container_end_page n/a
container_issue 46
container_start_page
container_title European journal of organic chemistry
container_volume 27
creator Santos, Carlos V. P.
Mattos, Marcio C. S.
description A systematic mechanistic study employing rate constant (kobs) kinetics measurements, linear free‐energy relationship, hydrogen kinetic isotope effect and rate law, as well as the Density Functional Theory (DFT) approach (M06‐2x/6‐311G(d,p)) for the oxidation of diverse substituted benzyl alcohols with trichloroisocyanuric acid (TCCA)/H2O in 50 % MeCN/CH2Cl2 at 25.0 °C is present. The kinetic results showed an autocatalytic behavior and a primary kinetic isotope effect (4.22). The linear free‐energy relationship (σ, ρ=−1.22) indicated a mechanism change for 4‐CF3, 3‐NO2 and 4‐NO2 substituted benzyl alcohols and a fractional rate law (3.25) for benzyl alcohol. The DFT results indicated Cl2, formed in situ from TCCA and HCl. Furthermore, calculations support the kinetic results with high agreement through a transition state that performs a hydride ion by autocatalytic Cl2 in the induction zone. In the case of substrates bearing strong electron withdrawing groups, the mechanism changes to hydrogen ion from the corresponding benzyl hypochlorite as the main pathway. The mechanism for the oxidation of substituted benzyl alcohols with TCCA was elucidated by kinetic measurements and DFT calculations. We found hydride ion by autocatalytic Cl2 as the determining step, while strongly electron withdrawing groups diverted the reaction course to hydrogen ion from the respective organic hypochlorite as a special case.
doi_str_mv 10.1002/ejoc.202400834
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3146016293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146016293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2024-be4228660ca2236e75ce1e57bf4afd4cf33257eb1e17f8cda5499df3014665fe3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqWwMltiTvErTj2GqrxU1KFFYrMcx1ZchbjYiUr49SQqgpHpPvSde64OANcYzTBC5NbsvJ4RRBhCc8pOwAQjIRLEBTodekZZggV9OwcXMe4QQoJzPAFFDl-MrlTjYus03LRd2UNvYVsZuP50pWqdb8bFpisGou1aU8I703z1Ncxr7StfR3hwbQW3wemq9sG76HWvmm6YYa5deQnOrKqjufqpU_B6v9wuHpPV-uFpka8SPT6dFIYRMuccaUUI5SZLtcEmzQrLlC2ZtpSSNDMFNjizc12qlAlRWoow4zy1hk7BzfHuPviPzsRW7nwXmsFS0oFBmBNBB2p2pHTwMQZj5T64dxV6iZEcc5RjjvI3x0EgjoKDq03_Dy2Xz-vFn_YbpRx4Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146016293</pqid></control><display><type>article</type><title>A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid</title><source>Wiley</source><creator>Santos, Carlos V. P. ; Mattos, Marcio C. S.</creator><creatorcontrib>Santos, Carlos V. P. ; Mattos, Marcio C. S.</creatorcontrib><description>A systematic mechanistic study employing rate constant (kobs) kinetics measurements, linear free‐energy relationship, hydrogen kinetic isotope effect and rate law, as well as the Density Functional Theory (DFT) approach (M06‐2x/6‐311G(d,p)) for the oxidation of diverse substituted benzyl alcohols with trichloroisocyanuric acid (TCCA)/H2O in 50 % MeCN/CH2Cl2 at 25.0 °C is present. The kinetic results showed an autocatalytic behavior and a primary kinetic isotope effect (4.22). The linear free‐energy relationship (σ, ρ=−1.22) indicated a mechanism change for 4‐CF3, 3‐NO2 and 4‐NO2 substituted benzyl alcohols and a fractional rate law (3.25) for benzyl alcohol. The DFT results indicated Cl2, formed in situ from TCCA and HCl. Furthermore, calculations support the kinetic results with high agreement through a transition state that performs a hydride ion by autocatalytic Cl2 in the induction zone. In the case of substrates bearing strong electron withdrawing groups, the mechanism changes to hydrogen ion from the corresponding benzyl hypochlorite as the main pathway. The mechanism for the oxidation of substituted benzyl alcohols with TCCA was elucidated by kinetic measurements and DFT calculations. We found hydride ion by autocatalytic Cl2 as the determining step, while strongly electron withdrawing groups diverted the reaction course to hydrogen ion from the respective organic hypochlorite as a special case.</description><identifier>ISSN: 1434-193X</identifier><identifier>EISSN: 1099-0690</identifier><identifier>DOI: 10.1002/ejoc.202400834</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alcohol ; Alcohol oxidation ; Autocatalysis ; Benzyl alcohol ; Density functional theory ; DFT calculations ; Dichloromethane ; Isotope effect ; Kinetics ; Nitrogen dioxide ; Oxidation ; Reaction kinetics ; Reaction mechanisms ; Substitutes</subject><ispartof>European journal of organic chemistry, 2024-11, Vol.27 (46), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2024-be4228660ca2236e75ce1e57bf4afd4cf33257eb1e17f8cda5499df3014665fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Santos, Carlos V. P.</creatorcontrib><creatorcontrib>Mattos, Marcio C. S.</creatorcontrib><title>A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid</title><title>European journal of organic chemistry</title><description>A systematic mechanistic study employing rate constant (kobs) kinetics measurements, linear free‐energy relationship, hydrogen kinetic isotope effect and rate law, as well as the Density Functional Theory (DFT) approach (M06‐2x/6‐311G(d,p)) for the oxidation of diverse substituted benzyl alcohols with trichloroisocyanuric acid (TCCA)/H2O in 50 % MeCN/CH2Cl2 at 25.0 °C is present. The kinetic results showed an autocatalytic behavior and a primary kinetic isotope effect (4.22). The linear free‐energy relationship (σ, ρ=−1.22) indicated a mechanism change for 4‐CF3, 3‐NO2 and 4‐NO2 substituted benzyl alcohols and a fractional rate law (3.25) for benzyl alcohol. The DFT results indicated Cl2, formed in situ from TCCA and HCl. Furthermore, calculations support the kinetic results with high agreement through a transition state that performs a hydride ion by autocatalytic Cl2 in the induction zone. In the case of substrates bearing strong electron withdrawing groups, the mechanism changes to hydrogen ion from the corresponding benzyl hypochlorite as the main pathway. The mechanism for the oxidation of substituted benzyl alcohols with TCCA was elucidated by kinetic measurements and DFT calculations. We found hydride ion by autocatalytic Cl2 as the determining step, while strongly electron withdrawing groups diverted the reaction course to hydrogen ion from the respective organic hypochlorite as a special case.</description><subject>Alcohol</subject><subject>Alcohol oxidation</subject><subject>Autocatalysis</subject><subject>Benzyl alcohol</subject><subject>Density functional theory</subject><subject>DFT calculations</subject><subject>Dichloromethane</subject><subject>Isotope effect</subject><subject>Kinetics</subject><subject>Nitrogen dioxide</subject><subject>Oxidation</subject><subject>Reaction kinetics</subject><subject>Reaction mechanisms</subject><subject>Substitutes</subject><issn>1434-193X</issn><issn>1099-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqWwMltiTvErTj2GqrxU1KFFYrMcx1ZchbjYiUr49SQqgpHpPvSde64OANcYzTBC5NbsvJ4RRBhCc8pOwAQjIRLEBTodekZZggV9OwcXMe4QQoJzPAFFDl-MrlTjYus03LRd2UNvYVsZuP50pWqdb8bFpisGou1aU8I703z1Ncxr7StfR3hwbQW3wemq9sG76HWvmm6YYa5deQnOrKqjufqpU_B6v9wuHpPV-uFpka8SPT6dFIYRMuccaUUI5SZLtcEmzQrLlC2ZtpSSNDMFNjizc12qlAlRWoow4zy1hk7BzfHuPviPzsRW7nwXmsFS0oFBmBNBB2p2pHTwMQZj5T64dxV6iZEcc5RjjvI3x0EgjoKDq03_Dy2Xz-vFn_YbpRx4Hg</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Santos, Carlos V. P.</creator><creator>Mattos, Marcio C. S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241114</creationdate><title>A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid</title><author>Santos, Carlos V. P. ; Mattos, Marcio C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2024-be4228660ca2236e75ce1e57bf4afd4cf33257eb1e17f8cda5499df3014665fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alcohol</topic><topic>Alcohol oxidation</topic><topic>Autocatalysis</topic><topic>Benzyl alcohol</topic><topic>Density functional theory</topic><topic>DFT calculations</topic><topic>Dichloromethane</topic><topic>Isotope effect</topic><topic>Kinetics</topic><topic>Nitrogen dioxide</topic><topic>Oxidation</topic><topic>Reaction kinetics</topic><topic>Reaction mechanisms</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Carlos V. P.</creatorcontrib><creatorcontrib>Mattos, Marcio C. S.</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Carlos V. P.</au><au>Mattos, Marcio C. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid</atitle><jtitle>European journal of organic chemistry</jtitle><date>2024-11-14</date><risdate>2024</risdate><volume>27</volume><issue>46</issue><epage>n/a</epage><issn>1434-193X</issn><eissn>1099-0690</eissn><abstract>A systematic mechanistic study employing rate constant (kobs) kinetics measurements, linear free‐energy relationship, hydrogen kinetic isotope effect and rate law, as well as the Density Functional Theory (DFT) approach (M06‐2x/6‐311G(d,p)) for the oxidation of diverse substituted benzyl alcohols with trichloroisocyanuric acid (TCCA)/H2O in 50 % MeCN/CH2Cl2 at 25.0 °C is present. The kinetic results showed an autocatalytic behavior and a primary kinetic isotope effect (4.22). The linear free‐energy relationship (σ, ρ=−1.22) indicated a mechanism change for 4‐CF3, 3‐NO2 and 4‐NO2 substituted benzyl alcohols and a fractional rate law (3.25) for benzyl alcohol. The DFT results indicated Cl2, formed in situ from TCCA and HCl. Furthermore, calculations support the kinetic results with high agreement through a transition state that performs a hydride ion by autocatalytic Cl2 in the induction zone. In the case of substrates bearing strong electron withdrawing groups, the mechanism changes to hydrogen ion from the corresponding benzyl hypochlorite as the main pathway. The mechanism for the oxidation of substituted benzyl alcohols with TCCA was elucidated by kinetic measurements and DFT calculations. We found hydride ion by autocatalytic Cl2 as the determining step, while strongly electron withdrawing groups diverted the reaction course to hydrogen ion from the respective organic hypochlorite as a special case.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejoc.202400834</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-193X
ispartof European journal of organic chemistry, 2024-11, Vol.27 (46), p.n/a
issn 1434-193X
1099-0690
language eng
recordid cdi_proquest_journals_3146016293
source Wiley
subjects Alcohol
Alcohol oxidation
Autocatalysis
Benzyl alcohol
Density functional theory
DFT calculations
Dichloromethane
Isotope effect
Kinetics
Nitrogen dioxide
Oxidation
Reaction kinetics
Reaction mechanisms
Substitutes
title A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mechanistic%20Study%20of%20the%20Oxidation%20of%20Substituted%20Benzyl%20Alcohols%20with%20Trichloroisocyanuric%20Acid&rft.jtitle=European%20journal%20of%20organic%20chemistry&rft.au=Santos,%20Carlos%20V.%20P.&rft.date=2024-11-14&rft.volume=27&rft.issue=46&rft.epage=n/a&rft.issn=1434-193X&rft.eissn=1099-0690&rft_id=info:doi/10.1002/ejoc.202400834&rft_dat=%3Cproquest_cross%3E3146016293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2024-be4228660ca2236e75ce1e57bf4afd4cf33257eb1e17f8cda5499df3014665fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146016293&rft_id=info:pmid/&rfr_iscdi=true