Loading…
A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid
A systematic mechanistic study employing rate constant (kobs) kinetics measurements, linear free‐energy relationship, hydrogen kinetic isotope effect and rate law, as well as the Density Functional Theory (DFT) approach (M06‐2x/6‐311G(d,p)) for the oxidation of diverse substituted benzyl alcohols wi...
Saved in:
Published in: | European journal of organic chemistry 2024-11, Vol.27 (46), p.n/a |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2024-be4228660ca2236e75ce1e57bf4afd4cf33257eb1e17f8cda5499df3014665fe3 |
container_end_page | n/a |
container_issue | 46 |
container_start_page | |
container_title | European journal of organic chemistry |
container_volume | 27 |
creator | Santos, Carlos V. P. Mattos, Marcio C. S. |
description | A systematic mechanistic study employing rate constant (kobs) kinetics measurements, linear free‐energy relationship, hydrogen kinetic isotope effect and rate law, as well as the Density Functional Theory (DFT) approach (M06‐2x/6‐311G(d,p)) for the oxidation of diverse substituted benzyl alcohols with trichloroisocyanuric acid (TCCA)/H2O in 50 % MeCN/CH2Cl2 at 25.0 °C is present. The kinetic results showed an autocatalytic behavior and a primary kinetic isotope effect (4.22). The linear free‐energy relationship (σ, ρ=−1.22) indicated a mechanism change for 4‐CF3, 3‐NO2 and 4‐NO2 substituted benzyl alcohols and a fractional rate law (3.25) for benzyl alcohol. The DFT results indicated Cl2, formed in situ from TCCA and HCl. Furthermore, calculations support the kinetic results with high agreement through a transition state that performs a hydride ion by autocatalytic Cl2 in the induction zone. In the case of substrates bearing strong electron withdrawing groups, the mechanism changes to hydrogen ion from the corresponding benzyl hypochlorite as the main pathway.
The mechanism for the oxidation of substituted benzyl alcohols with TCCA was elucidated by kinetic measurements and DFT calculations. We found hydride ion by autocatalytic Cl2 as the determining step, while strongly electron withdrawing groups diverted the reaction course to hydrogen ion from the respective organic hypochlorite as a special case. |
doi_str_mv | 10.1002/ejoc.202400834 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3146016293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146016293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2024-be4228660ca2236e75ce1e57bf4afd4cf33257eb1e17f8cda5499df3014665fe3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqWwMltiTvErTj2GqrxU1KFFYrMcx1ZchbjYiUr49SQqgpHpPvSde64OANcYzTBC5NbsvJ4RRBhCc8pOwAQjIRLEBTodekZZggV9OwcXMe4QQoJzPAFFDl-MrlTjYus03LRd2UNvYVsZuP50pWqdb8bFpisGou1aU8I703z1Ncxr7StfR3hwbQW3wemq9sG76HWvmm6YYa5deQnOrKqjufqpU_B6v9wuHpPV-uFpka8SPT6dFIYRMuccaUUI5SZLtcEmzQrLlC2ZtpSSNDMFNjizc12qlAlRWoow4zy1hk7BzfHuPviPzsRW7nwXmsFS0oFBmBNBB2p2pHTwMQZj5T64dxV6iZEcc5RjjvI3x0EgjoKDq03_Dy2Xz-vFn_YbpRx4Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146016293</pqid></control><display><type>article</type><title>A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid</title><source>Wiley</source><creator>Santos, Carlos V. P. ; Mattos, Marcio C. S.</creator><creatorcontrib>Santos, Carlos V. P. ; Mattos, Marcio C. S.</creatorcontrib><description>A systematic mechanistic study employing rate constant (kobs) kinetics measurements, linear free‐energy relationship, hydrogen kinetic isotope effect and rate law, as well as the Density Functional Theory (DFT) approach (M06‐2x/6‐311G(d,p)) for the oxidation of diverse substituted benzyl alcohols with trichloroisocyanuric acid (TCCA)/H2O in 50 % MeCN/CH2Cl2 at 25.0 °C is present. The kinetic results showed an autocatalytic behavior and a primary kinetic isotope effect (4.22). The linear free‐energy relationship (σ, ρ=−1.22) indicated a mechanism change for 4‐CF3, 3‐NO2 and 4‐NO2 substituted benzyl alcohols and a fractional rate law (3.25) for benzyl alcohol. The DFT results indicated Cl2, formed in situ from TCCA and HCl. Furthermore, calculations support the kinetic results with high agreement through a transition state that performs a hydride ion by autocatalytic Cl2 in the induction zone. In the case of substrates bearing strong electron withdrawing groups, the mechanism changes to hydrogen ion from the corresponding benzyl hypochlorite as the main pathway.
The mechanism for the oxidation of substituted benzyl alcohols with TCCA was elucidated by kinetic measurements and DFT calculations. We found hydride ion by autocatalytic Cl2 as the determining step, while strongly electron withdrawing groups diverted the reaction course to hydrogen ion from the respective organic hypochlorite as a special case.</description><identifier>ISSN: 1434-193X</identifier><identifier>EISSN: 1099-0690</identifier><identifier>DOI: 10.1002/ejoc.202400834</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alcohol ; Alcohol oxidation ; Autocatalysis ; Benzyl alcohol ; Density functional theory ; DFT calculations ; Dichloromethane ; Isotope effect ; Kinetics ; Nitrogen dioxide ; Oxidation ; Reaction kinetics ; Reaction mechanisms ; Substitutes</subject><ispartof>European journal of organic chemistry, 2024-11, Vol.27 (46), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2024-be4228660ca2236e75ce1e57bf4afd4cf33257eb1e17f8cda5499df3014665fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Santos, Carlos V. P.</creatorcontrib><creatorcontrib>Mattos, Marcio C. S.</creatorcontrib><title>A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid</title><title>European journal of organic chemistry</title><description>A systematic mechanistic study employing rate constant (kobs) kinetics measurements, linear free‐energy relationship, hydrogen kinetic isotope effect and rate law, as well as the Density Functional Theory (DFT) approach (M06‐2x/6‐311G(d,p)) for the oxidation of diverse substituted benzyl alcohols with trichloroisocyanuric acid (TCCA)/H2O in 50 % MeCN/CH2Cl2 at 25.0 °C is present. The kinetic results showed an autocatalytic behavior and a primary kinetic isotope effect (4.22). The linear free‐energy relationship (σ, ρ=−1.22) indicated a mechanism change for 4‐CF3, 3‐NO2 and 4‐NO2 substituted benzyl alcohols and a fractional rate law (3.25) for benzyl alcohol. The DFT results indicated Cl2, formed in situ from TCCA and HCl. Furthermore, calculations support the kinetic results with high agreement through a transition state that performs a hydride ion by autocatalytic Cl2 in the induction zone. In the case of substrates bearing strong electron withdrawing groups, the mechanism changes to hydrogen ion from the corresponding benzyl hypochlorite as the main pathway.
The mechanism for the oxidation of substituted benzyl alcohols with TCCA was elucidated by kinetic measurements and DFT calculations. We found hydride ion by autocatalytic Cl2 as the determining step, while strongly electron withdrawing groups diverted the reaction course to hydrogen ion from the respective organic hypochlorite as a special case.</description><subject>Alcohol</subject><subject>Alcohol oxidation</subject><subject>Autocatalysis</subject><subject>Benzyl alcohol</subject><subject>Density functional theory</subject><subject>DFT calculations</subject><subject>Dichloromethane</subject><subject>Isotope effect</subject><subject>Kinetics</subject><subject>Nitrogen dioxide</subject><subject>Oxidation</subject><subject>Reaction kinetics</subject><subject>Reaction mechanisms</subject><subject>Substitutes</subject><issn>1434-193X</issn><issn>1099-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqWwMltiTvErTj2GqrxU1KFFYrMcx1ZchbjYiUr49SQqgpHpPvSde64OANcYzTBC5NbsvJ4RRBhCc8pOwAQjIRLEBTodekZZggV9OwcXMe4QQoJzPAFFDl-MrlTjYus03LRd2UNvYVsZuP50pWqdb8bFpisGou1aU8I703z1Ncxr7StfR3hwbQW3wemq9sG76HWvmm6YYa5deQnOrKqjufqpU_B6v9wuHpPV-uFpka8SPT6dFIYRMuccaUUI5SZLtcEmzQrLlC2ZtpSSNDMFNjizc12qlAlRWoow4zy1hk7BzfHuPviPzsRW7nwXmsFS0oFBmBNBB2p2pHTwMQZj5T64dxV6iZEcc5RjjvI3x0EgjoKDq03_Dy2Xz-vFn_YbpRx4Hg</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Santos, Carlos V. P.</creator><creator>Mattos, Marcio C. S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241114</creationdate><title>A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid</title><author>Santos, Carlos V. P. ; Mattos, Marcio C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2024-be4228660ca2236e75ce1e57bf4afd4cf33257eb1e17f8cda5499df3014665fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alcohol</topic><topic>Alcohol oxidation</topic><topic>Autocatalysis</topic><topic>Benzyl alcohol</topic><topic>Density functional theory</topic><topic>DFT calculations</topic><topic>Dichloromethane</topic><topic>Isotope effect</topic><topic>Kinetics</topic><topic>Nitrogen dioxide</topic><topic>Oxidation</topic><topic>Reaction kinetics</topic><topic>Reaction mechanisms</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Carlos V. P.</creatorcontrib><creatorcontrib>Mattos, Marcio C. S.</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Carlos V. P.</au><au>Mattos, Marcio C. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid</atitle><jtitle>European journal of organic chemistry</jtitle><date>2024-11-14</date><risdate>2024</risdate><volume>27</volume><issue>46</issue><epage>n/a</epage><issn>1434-193X</issn><eissn>1099-0690</eissn><abstract>A systematic mechanistic study employing rate constant (kobs) kinetics measurements, linear free‐energy relationship, hydrogen kinetic isotope effect and rate law, as well as the Density Functional Theory (DFT) approach (M06‐2x/6‐311G(d,p)) for the oxidation of diverse substituted benzyl alcohols with trichloroisocyanuric acid (TCCA)/H2O in 50 % MeCN/CH2Cl2 at 25.0 °C is present. The kinetic results showed an autocatalytic behavior and a primary kinetic isotope effect (4.22). The linear free‐energy relationship (σ, ρ=−1.22) indicated a mechanism change for 4‐CF3, 3‐NO2 and 4‐NO2 substituted benzyl alcohols and a fractional rate law (3.25) for benzyl alcohol. The DFT results indicated Cl2, formed in situ from TCCA and HCl. Furthermore, calculations support the kinetic results with high agreement through a transition state that performs a hydride ion by autocatalytic Cl2 in the induction zone. In the case of substrates bearing strong electron withdrawing groups, the mechanism changes to hydrogen ion from the corresponding benzyl hypochlorite as the main pathway.
The mechanism for the oxidation of substituted benzyl alcohols with TCCA was elucidated by kinetic measurements and DFT calculations. We found hydride ion by autocatalytic Cl2 as the determining step, while strongly electron withdrawing groups diverted the reaction course to hydrogen ion from the respective organic hypochlorite as a special case.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejoc.202400834</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-193X |
ispartof | European journal of organic chemistry, 2024-11, Vol.27 (46), p.n/a |
issn | 1434-193X 1099-0690 |
language | eng |
recordid | cdi_proquest_journals_3146016293 |
source | Wiley |
subjects | Alcohol Alcohol oxidation Autocatalysis Benzyl alcohol Density functional theory DFT calculations Dichloromethane Isotope effect Kinetics Nitrogen dioxide Oxidation Reaction kinetics Reaction mechanisms Substitutes |
title | A Mechanistic Study of the Oxidation of Substituted Benzyl Alcohols with Trichloroisocyanuric Acid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mechanistic%20Study%20of%20the%20Oxidation%20of%20Substituted%20Benzyl%20Alcohols%20with%20Trichloroisocyanuric%20Acid&rft.jtitle=European%20journal%20of%20organic%20chemistry&rft.au=Santos,%20Carlos%20V.%20P.&rft.date=2024-11-14&rft.volume=27&rft.issue=46&rft.epage=n/a&rft.issn=1434-193X&rft.eissn=1099-0690&rft_id=info:doi/10.1002/ejoc.202400834&rft_dat=%3Cproquest_cross%3E3146016293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2024-be4228660ca2236e75ce1e57bf4afd4cf33257eb1e17f8cda5499df3014665fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146016293&rft_id=info:pmid/&rfr_iscdi=true |