Loading…
Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries
The electrocatalytic activity of catalysts can be significantly enhanced through the utilization of heterogeneous structures. Nevertheless, the optimization of both catalytic activity and durability via heterojunction engineering remains a considerable challenge. In this work, we fabricated electroc...
Saved in:
Published in: | Inorganic chemistry frontiers 2025-01, Vol.12 (1), p.205-216 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 216 |
container_issue | 1 |
container_start_page | 205 |
container_title | Inorganic chemistry frontiers |
container_volume | 12 |
creator | Tao-Tao, Li Yu-Rui, Ji Yi-Meng, Wu Peng-Fei, Wang Zong-Lin, Liu Shu, Jie Ting-Feng, Yi |
description | The electrocatalytic activity of catalysts can be significantly enhanced through the utilization of heterogeneous structures. Nevertheless, the optimization of both catalytic activity and durability via heterojunction engineering remains a considerable challenge. In this work, we fabricated electrocatalysts of Co/CoO heterojunctions on a highly porous hollow carbon material. The formation of heterojunctions increases the abundance of accessible active sites and optimizes the electrocatalytic reaction kinetics and reactivity. Thus, the prepared catalysts (Co/CoO@N–C-40) deliver robust and stable bifunctional oxygen electrocatalytic activity during the oxygen reduction/evolution reaction (ORR/OER) process. The performance of rechargeable zinc–air batteries (ZABs) greatly depends on bifunctional oxygen electrocatalysts, which are crucial for efficient charging and discharging processes. Consequently, the Co/CoO@N–C-40-based ZABs have superior cycling stability (750 h) and show a stable energy efficiency of 55.10% at 10 mA cm−2 (53.46% after 555 h). This work offers a high-quality oxygen electrocatalyst for ZABs and extends the application of heterogeneous interfacial catalysts in various energy storage and conversion devices. |
doi_str_mv | 10.1039/d4qi02213k |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3146138397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146138397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-a900815a3c8fde0a6e25c1a3c998509f8b3e63d9cdc64e4f7cf21f19afce16ee3</originalsourceid><addsrcrecordid>eNo9j81KBDEQhIMouKx78QkCnkeTyfzlKIu6woIXPS89PZ3Z6JC4mYw4nnwH39AnMaB46vqKoppi7FyKSymUvuqKgxV5LtXLEVvkoswzWZbq-F8X5SlbjaNtRTKElqJesGlDkYLvyZGfRm5dIgNInFxvHVGwrufRJ9yDS7Z_n1OW00AYg0eIMMzRIgeM9s3GmRsfeCDcQ-gJ2oH4h3X4_fkFNvAWYqq3NJ6xEwPDSKu_u2RPtzeP6022fbi7X19vM5S1iBloIRpZgsLGdCSgorxEmVDrJg0wTauoUp3GDquCClOjyaWRGgySrIjUkl389r4Gf5hojLtnPwWXXu6ULCqpGqVr9QOkM2Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146138397</pqid></control><display><type>article</type><title>Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Tao-Tao, Li ; Yu-Rui, Ji ; Yi-Meng, Wu ; Peng-Fei, Wang ; Zong-Lin, Liu ; Shu, Jie ; Ting-Feng, Yi</creator><creatorcontrib>Tao-Tao, Li ; Yu-Rui, Ji ; Yi-Meng, Wu ; Peng-Fei, Wang ; Zong-Lin, Liu ; Shu, Jie ; Ting-Feng, Yi</creatorcontrib><description>The electrocatalytic activity of catalysts can be significantly enhanced through the utilization of heterogeneous structures. Nevertheless, the optimization of both catalytic activity and durability via heterojunction engineering remains a considerable challenge. In this work, we fabricated electrocatalysts of Co/CoO heterojunctions on a highly porous hollow carbon material. The formation of heterojunctions increases the abundance of accessible active sites and optimizes the electrocatalytic reaction kinetics and reactivity. Thus, the prepared catalysts (Co/CoO@N–C-40) deliver robust and stable bifunctional oxygen electrocatalytic activity during the oxygen reduction/evolution reaction (ORR/OER) process. The performance of rechargeable zinc–air batteries (ZABs) greatly depends on bifunctional oxygen electrocatalysts, which are crucial for efficient charging and discharging processes. Consequently, the Co/CoO@N–C-40-based ZABs have superior cycling stability (750 h) and show a stable energy efficiency of 55.10% at 10 mA cm−2 (53.46% after 555 h). This work offers a high-quality oxygen electrocatalyst for ZABs and extends the application of heterogeneous interfacial catalysts in various energy storage and conversion devices.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d4qi02213k</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Catalysts ; Catalytic activity ; Electrocatalysts ; Heterojunctions ; Metal air batteries ; Porous materials ; Reaction kinetics ; Zinc-oxygen batteries</subject><ispartof>Inorganic chemistry frontiers, 2025-01, Vol.12 (1), p.205-216</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tao-Tao, Li</creatorcontrib><creatorcontrib>Yu-Rui, Ji</creatorcontrib><creatorcontrib>Yi-Meng, Wu</creatorcontrib><creatorcontrib>Peng-Fei, Wang</creatorcontrib><creatorcontrib>Zong-Lin, Liu</creatorcontrib><creatorcontrib>Shu, Jie</creatorcontrib><creatorcontrib>Ting-Feng, Yi</creatorcontrib><title>Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries</title><title>Inorganic chemistry frontiers</title><description>The electrocatalytic activity of catalysts can be significantly enhanced through the utilization of heterogeneous structures. Nevertheless, the optimization of both catalytic activity and durability via heterojunction engineering remains a considerable challenge. In this work, we fabricated electrocatalysts of Co/CoO heterojunctions on a highly porous hollow carbon material. The formation of heterojunctions increases the abundance of accessible active sites and optimizes the electrocatalytic reaction kinetics and reactivity. Thus, the prepared catalysts (Co/CoO@N–C-40) deliver robust and stable bifunctional oxygen electrocatalytic activity during the oxygen reduction/evolution reaction (ORR/OER) process. The performance of rechargeable zinc–air batteries (ZABs) greatly depends on bifunctional oxygen electrocatalysts, which are crucial for efficient charging and discharging processes. Consequently, the Co/CoO@N–C-40-based ZABs have superior cycling stability (750 h) and show a stable energy efficiency of 55.10% at 10 mA cm−2 (53.46% after 555 h). This work offers a high-quality oxygen electrocatalyst for ZABs and extends the application of heterogeneous interfacial catalysts in various energy storage and conversion devices.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Electrocatalysts</subject><subject>Heterojunctions</subject><subject>Metal air batteries</subject><subject>Porous materials</subject><subject>Reaction kinetics</subject><subject>Zinc-oxygen batteries</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9j81KBDEQhIMouKx78QkCnkeTyfzlKIu6woIXPS89PZ3Z6JC4mYw4nnwH39AnMaB46vqKoppi7FyKSymUvuqKgxV5LtXLEVvkoswzWZbq-F8X5SlbjaNtRTKElqJesGlDkYLvyZGfRm5dIgNInFxvHVGwrufRJ9yDS7Z_n1OW00AYg0eIMMzRIgeM9s3GmRsfeCDcQ-gJ2oH4h3X4_fkFNvAWYqq3NJ6xEwPDSKu_u2RPtzeP6022fbi7X19vM5S1iBloIRpZgsLGdCSgorxEmVDrJg0wTauoUp3GDquCClOjyaWRGgySrIjUkl389r4Gf5hojLtnPwWXXu6ULCqpGqVr9QOkM2Kg</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Tao-Tao, Li</creator><creator>Yu-Rui, Ji</creator><creator>Yi-Meng, Wu</creator><creator>Peng-Fei, Wang</creator><creator>Zong-Lin, Liu</creator><creator>Shu, Jie</creator><creator>Ting-Feng, Yi</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20250101</creationdate><title>Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries</title><author>Tao-Tao, Li ; Yu-Rui, Ji ; Yi-Meng, Wu ; Peng-Fei, Wang ; Zong-Lin, Liu ; Shu, Jie ; Ting-Feng, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-a900815a3c8fde0a6e25c1a3c998509f8b3e63d9cdc64e4f7cf21f19afce16ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Electrocatalysts</topic><topic>Heterojunctions</topic><topic>Metal air batteries</topic><topic>Porous materials</topic><topic>Reaction kinetics</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao-Tao, Li</creatorcontrib><creatorcontrib>Yu-Rui, Ji</creatorcontrib><creatorcontrib>Yi-Meng, Wu</creatorcontrib><creatorcontrib>Peng-Fei, Wang</creatorcontrib><creatorcontrib>Zong-Lin, Liu</creatorcontrib><creatorcontrib>Shu, Jie</creatorcontrib><creatorcontrib>Ting-Feng, Yi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao-Tao, Li</au><au>Yu-Rui, Ji</au><au>Yi-Meng, Wu</au><au>Peng-Fei, Wang</au><au>Zong-Lin, Liu</au><au>Shu, Jie</au><au>Ting-Feng, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>12</volume><issue>1</issue><spage>205</spage><epage>216</epage><pages>205-216</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>The electrocatalytic activity of catalysts can be significantly enhanced through the utilization of heterogeneous structures. Nevertheless, the optimization of both catalytic activity and durability via heterojunction engineering remains a considerable challenge. In this work, we fabricated electrocatalysts of Co/CoO heterojunctions on a highly porous hollow carbon material. The formation of heterojunctions increases the abundance of accessible active sites and optimizes the electrocatalytic reaction kinetics and reactivity. Thus, the prepared catalysts (Co/CoO@N–C-40) deliver robust and stable bifunctional oxygen electrocatalytic activity during the oxygen reduction/evolution reaction (ORR/OER) process. The performance of rechargeable zinc–air batteries (ZABs) greatly depends on bifunctional oxygen electrocatalysts, which are crucial for efficient charging and discharging processes. Consequently, the Co/CoO@N–C-40-based ZABs have superior cycling stability (750 h) and show a stable energy efficiency of 55.10% at 10 mA cm−2 (53.46% after 555 h). This work offers a high-quality oxygen electrocatalyst for ZABs and extends the application of heterogeneous interfacial catalysts in various energy storage and conversion devices.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4qi02213k</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1545 |
ispartof | Inorganic chemistry frontiers, 2025-01, Vol.12 (1), p.205-216 |
issn | 2052-1545 2052-1553 |
language | eng |
recordid | cdi_proquest_journals_3146138397 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Catalysts Catalytic activity Electrocatalysts Heterojunctions Metal air batteries Porous materials Reaction kinetics Zinc-oxygen batteries |
title | Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20interface%20engineering%20to%20enhance%20oxygen%20electrocatalytic%20activity%20for%20rechargeable%20zinc%E2%80%93air%20batteries&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Tao-Tao,%20Li&rft.date=2025-01-01&rft.volume=12&rft.issue=1&rft.spage=205&rft.epage=216&rft.pages=205-216&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d4qi02213k&rft_dat=%3Cproquest%3E3146138397%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-a900815a3c8fde0a6e25c1a3c998509f8b3e63d9cdc64e4f7cf21f19afce16ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146138397&rft_id=info:pmid/&rfr_iscdi=true |