Loading…

Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries

The electrocatalytic activity of catalysts can be significantly enhanced through the utilization of heterogeneous structures. Nevertheless, the optimization of both catalytic activity and durability via heterojunction engineering remains a considerable challenge. In this work, we fabricated electroc...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry frontiers 2025-01, Vol.12 (1), p.205-216
Main Authors: Tao-Tao, Li, Yu-Rui, Ji, Yi-Meng, Wu, Peng-Fei, Wang, Zong-Lin, Liu, Shu, Jie, Ting-Feng, Yi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 216
container_issue 1
container_start_page 205
container_title Inorganic chemistry frontiers
container_volume 12
creator Tao-Tao, Li
Yu-Rui, Ji
Yi-Meng, Wu
Peng-Fei, Wang
Zong-Lin, Liu
Shu, Jie
Ting-Feng, Yi
description The electrocatalytic activity of catalysts can be significantly enhanced through the utilization of heterogeneous structures. Nevertheless, the optimization of both catalytic activity and durability via heterojunction engineering remains a considerable challenge. In this work, we fabricated electrocatalysts of Co/CoO heterojunctions on a highly porous hollow carbon material. The formation of heterojunctions increases the abundance of accessible active sites and optimizes the electrocatalytic reaction kinetics and reactivity. Thus, the prepared catalysts (Co/CoO@N–C-40) deliver robust and stable bifunctional oxygen electrocatalytic activity during the oxygen reduction/evolution reaction (ORR/OER) process. The performance of rechargeable zinc–air batteries (ZABs) greatly depends on bifunctional oxygen electrocatalysts, which are crucial for efficient charging and discharging processes. Consequently, the Co/CoO@N–C-40-based ZABs have superior cycling stability (750 h) and show a stable energy efficiency of 55.10% at 10 mA cm−2 (53.46% after 555 h). This work offers a high-quality oxygen electrocatalyst for ZABs and extends the application of heterogeneous interfacial catalysts in various energy storage and conversion devices.
doi_str_mv 10.1039/d4qi02213k
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3146138397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146138397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-a900815a3c8fde0a6e25c1a3c998509f8b3e63d9cdc64e4f7cf21f19afce16ee3</originalsourceid><addsrcrecordid>eNo9j81KBDEQhIMouKx78QkCnkeTyfzlKIu6woIXPS89PZ3Z6JC4mYw4nnwH39AnMaB46vqKoppi7FyKSymUvuqKgxV5LtXLEVvkoswzWZbq-F8X5SlbjaNtRTKElqJesGlDkYLvyZGfRm5dIgNInFxvHVGwrufRJ9yDS7Z_n1OW00AYg0eIMMzRIgeM9s3GmRsfeCDcQ-gJ2oH4h3X4_fkFNvAWYqq3NJ6xEwPDSKu_u2RPtzeP6022fbi7X19vM5S1iBloIRpZgsLGdCSgorxEmVDrJg0wTauoUp3GDquCClOjyaWRGgySrIjUkl389r4Gf5hojLtnPwWXXu6ULCqpGqVr9QOkM2Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146138397</pqid></control><display><type>article</type><title>Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Tao-Tao, Li ; Yu-Rui, Ji ; Yi-Meng, Wu ; Peng-Fei, Wang ; Zong-Lin, Liu ; Shu, Jie ; Ting-Feng, Yi</creator><creatorcontrib>Tao-Tao, Li ; Yu-Rui, Ji ; Yi-Meng, Wu ; Peng-Fei, Wang ; Zong-Lin, Liu ; Shu, Jie ; Ting-Feng, Yi</creatorcontrib><description>The electrocatalytic activity of catalysts can be significantly enhanced through the utilization of heterogeneous structures. Nevertheless, the optimization of both catalytic activity and durability via heterojunction engineering remains a considerable challenge. In this work, we fabricated electrocatalysts of Co/CoO heterojunctions on a highly porous hollow carbon material. The formation of heterojunctions increases the abundance of accessible active sites and optimizes the electrocatalytic reaction kinetics and reactivity. Thus, the prepared catalysts (Co/CoO@N–C-40) deliver robust and stable bifunctional oxygen electrocatalytic activity during the oxygen reduction/evolution reaction (ORR/OER) process. The performance of rechargeable zinc–air batteries (ZABs) greatly depends on bifunctional oxygen electrocatalysts, which are crucial for efficient charging and discharging processes. Consequently, the Co/CoO@N–C-40-based ZABs have superior cycling stability (750 h) and show a stable energy efficiency of 55.10% at 10 mA cm−2 (53.46% after 555 h). This work offers a high-quality oxygen electrocatalyst for ZABs and extends the application of heterogeneous interfacial catalysts in various energy storage and conversion devices.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d4qi02213k</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Catalysts ; Catalytic activity ; Electrocatalysts ; Heterojunctions ; Metal air batteries ; Porous materials ; Reaction kinetics ; Zinc-oxygen batteries</subject><ispartof>Inorganic chemistry frontiers, 2025-01, Vol.12 (1), p.205-216</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tao-Tao, Li</creatorcontrib><creatorcontrib>Yu-Rui, Ji</creatorcontrib><creatorcontrib>Yi-Meng, Wu</creatorcontrib><creatorcontrib>Peng-Fei, Wang</creatorcontrib><creatorcontrib>Zong-Lin, Liu</creatorcontrib><creatorcontrib>Shu, Jie</creatorcontrib><creatorcontrib>Ting-Feng, Yi</creatorcontrib><title>Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries</title><title>Inorganic chemistry frontiers</title><description>The electrocatalytic activity of catalysts can be significantly enhanced through the utilization of heterogeneous structures. Nevertheless, the optimization of both catalytic activity and durability via heterojunction engineering remains a considerable challenge. In this work, we fabricated electrocatalysts of Co/CoO heterojunctions on a highly porous hollow carbon material. The formation of heterojunctions increases the abundance of accessible active sites and optimizes the electrocatalytic reaction kinetics and reactivity. Thus, the prepared catalysts (Co/CoO@N–C-40) deliver robust and stable bifunctional oxygen electrocatalytic activity during the oxygen reduction/evolution reaction (ORR/OER) process. The performance of rechargeable zinc–air batteries (ZABs) greatly depends on bifunctional oxygen electrocatalysts, which are crucial for efficient charging and discharging processes. Consequently, the Co/CoO@N–C-40-based ZABs have superior cycling stability (750 h) and show a stable energy efficiency of 55.10% at 10 mA cm−2 (53.46% after 555 h). This work offers a high-quality oxygen electrocatalyst for ZABs and extends the application of heterogeneous interfacial catalysts in various energy storage and conversion devices.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Electrocatalysts</subject><subject>Heterojunctions</subject><subject>Metal air batteries</subject><subject>Porous materials</subject><subject>Reaction kinetics</subject><subject>Zinc-oxygen batteries</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9j81KBDEQhIMouKx78QkCnkeTyfzlKIu6woIXPS89PZ3Z6JC4mYw4nnwH39AnMaB46vqKoppi7FyKSymUvuqKgxV5LtXLEVvkoswzWZbq-F8X5SlbjaNtRTKElqJesGlDkYLvyZGfRm5dIgNInFxvHVGwrufRJ9yDS7Z_n1OW00AYg0eIMMzRIgeM9s3GmRsfeCDcQ-gJ2oH4h3X4_fkFNvAWYqq3NJ6xEwPDSKu_u2RPtzeP6022fbi7X19vM5S1iBloIRpZgsLGdCSgorxEmVDrJg0wTauoUp3GDquCClOjyaWRGgySrIjUkl389r4Gf5hojLtnPwWXXu6ULCqpGqVr9QOkM2Kg</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Tao-Tao, Li</creator><creator>Yu-Rui, Ji</creator><creator>Yi-Meng, Wu</creator><creator>Peng-Fei, Wang</creator><creator>Zong-Lin, Liu</creator><creator>Shu, Jie</creator><creator>Ting-Feng, Yi</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20250101</creationdate><title>Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries</title><author>Tao-Tao, Li ; Yu-Rui, Ji ; Yi-Meng, Wu ; Peng-Fei, Wang ; Zong-Lin, Liu ; Shu, Jie ; Ting-Feng, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-a900815a3c8fde0a6e25c1a3c998509f8b3e63d9cdc64e4f7cf21f19afce16ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Electrocatalysts</topic><topic>Heterojunctions</topic><topic>Metal air batteries</topic><topic>Porous materials</topic><topic>Reaction kinetics</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao-Tao, Li</creatorcontrib><creatorcontrib>Yu-Rui, Ji</creatorcontrib><creatorcontrib>Yi-Meng, Wu</creatorcontrib><creatorcontrib>Peng-Fei, Wang</creatorcontrib><creatorcontrib>Zong-Lin, Liu</creatorcontrib><creatorcontrib>Shu, Jie</creatorcontrib><creatorcontrib>Ting-Feng, Yi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao-Tao, Li</au><au>Yu-Rui, Ji</au><au>Yi-Meng, Wu</au><au>Peng-Fei, Wang</au><au>Zong-Lin, Liu</au><au>Shu, Jie</au><au>Ting-Feng, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>12</volume><issue>1</issue><spage>205</spage><epage>216</epage><pages>205-216</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>The electrocatalytic activity of catalysts can be significantly enhanced through the utilization of heterogeneous structures. Nevertheless, the optimization of both catalytic activity and durability via heterojunction engineering remains a considerable challenge. In this work, we fabricated electrocatalysts of Co/CoO heterojunctions on a highly porous hollow carbon material. The formation of heterojunctions increases the abundance of accessible active sites and optimizes the electrocatalytic reaction kinetics and reactivity. Thus, the prepared catalysts (Co/CoO@N–C-40) deliver robust and stable bifunctional oxygen electrocatalytic activity during the oxygen reduction/evolution reaction (ORR/OER) process. The performance of rechargeable zinc–air batteries (ZABs) greatly depends on bifunctional oxygen electrocatalysts, which are crucial for efficient charging and discharging processes. Consequently, the Co/CoO@N–C-40-based ZABs have superior cycling stability (750 h) and show a stable energy efficiency of 55.10% at 10 mA cm−2 (53.46% after 555 h). This work offers a high-quality oxygen electrocatalyst for ZABs and extends the application of heterogeneous interfacial catalysts in various energy storage and conversion devices.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4qi02213k</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2052-1545
ispartof Inorganic chemistry frontiers, 2025-01, Vol.12 (1), p.205-216
issn 2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_3146138397
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Catalysts
Catalytic activity
Electrocatalysts
Heterojunctions
Metal air batteries
Porous materials
Reaction kinetics
Zinc-oxygen batteries
title Heterogeneous interface engineering to enhance oxygen electrocatalytic activity for rechargeable zinc–air batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20interface%20engineering%20to%20enhance%20oxygen%20electrocatalytic%20activity%20for%20rechargeable%20zinc%E2%80%93air%20batteries&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Tao-Tao,%20Li&rft.date=2025-01-01&rft.volume=12&rft.issue=1&rft.spage=205&rft.epage=216&rft.pages=205-216&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d4qi02213k&rft_dat=%3Cproquest%3E3146138397%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-a900815a3c8fde0a6e25c1a3c998509f8b3e63d9cdc64e4f7cf21f19afce16ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146138397&rft_id=info:pmid/&rfr_iscdi=true