Loading…

A geospatial approach for dynamic on-road emission through open-access floating car data

This paper presents a geospatial approach for quantifying street-level on-road emissions of carbon dioxide (CO 2 ), nitrogen oxides (NO x ), and carbon monoxide (CO). By leveraging an existing open-access database of real-time congestion information derived from floating car data, we tested three me...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research letters 2025-01, Vol.20 (1), p.14033
Main Authors: Fung, Pak Lun, Al-Jaghbeer, Omar, Chen, Jia, Paunu, Ville-Veikko, Vosough, Shaghayegh, Roncoli, Claudio, Järvi, Leena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-74d151de8052ffdff8b6579ff59e0b5e3716a7917bdb606f844b23ac02ae9ca13
container_end_page
container_issue 1
container_start_page 14033
container_title Environmental research letters
container_volume 20
creator Fung, Pak Lun
Al-Jaghbeer, Omar
Chen, Jia
Paunu, Ville-Veikko
Vosough, Shaghayegh
Roncoli, Claudio
Järvi, Leena
description This paper presents a geospatial approach for quantifying street-level on-road emissions of carbon dioxide (CO 2 ), nitrogen oxides (NO x ), and carbon monoxide (CO). By leveraging an existing open-access database of real-time congestion information derived from floating car data, we tested three methods to map high-resolution dynamic traffic emissions. To demonstrate the robustness and accuracy of the methods, we showcased results for summer workdays and winter weekends in the Helsinki Metropolitan Area (HMA). The three methods employed include (1) a physics-based relation known as the macroscopic fundamental diagram, (2) a data-driven input-adaptive generalized linear model (GLM), and (3) their ensemble (ENS). These methods estimated traffic density with satisfactory accuracy ( R 2 = 0.60–0.88, sMAPE = 31%–68%). Utilizing speed-dependent emission factors retrieved from a European database, the results compared favorably against the downscaled national emission inventory, particularly for CO 2 ( R 2 = 0.70–0.77). Among the three methods, GLM exhibited the best overall performance in the HMA, while ENS provided a robust upscaling solution. The modeled emissions exhibited dynamic diurnal and spatial behavior, influenced by different functional road classes, fleet compositions and congestion patterns. Congestion-induced emissions were calculated to account for up to 10% of the total vehicular emissions. Furthermore, to anticipate the forthcoming transportation transformation, we calculated emission changes under scenarios with various penetration rates of connected and autonomous vehicles (CAVs) using this geospatial approach. The introduction of CAVs could result in emission reductions of 3%–14% owing to congestion improvements.
doi_str_mv 10.1088/1748-9326/ad984d
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3146512950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b9d83c35e5e444b48cac434bf7bf3b79</doaj_id><sourcerecordid>3146512950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-74d151de8052ffdff8b6579ff59e0b5e3716a7917bdb606f844b23ac02ae9ca13</originalsourceid><addsrcrecordid>eNp1kc1P3DAQxSMEUmHhztESBy5NsWM7to8rRAEJiQtI3KzxVzarbBzs7IH_Hm9T0R7a01hP7_3GelNVlwT_IFjKGyKYrBVt2htwSjJ3VJ1-Scd_vb9VZzlvMeaMC3lava1R52OeYO5hQDBNKYLdoBATch8j7HqL4lgX0SG_63Pu44jmTYr7boPi5McarPU5ozDEghg7ZKEkYYbz6iTAkP3F77mqXn_evdw-1E_P94-366faNlLNtWCOcOK8xLwJwYUgTcuFCoErjw33VJAWhCLCONPiNkjGTEPB4ga8skDoqnpcuC7CVk-p30H60BF6_UuIqdOQ5t4OXhvlJLWUe-5ZwTBpwTLKTBAmUCNUYV0trNLC-97nWW_jPo3l-5oS1nLSKI6LCy8um2LOyYevrQTrwy30oWx9KFsvtyiR6yXSx-kP06dBNyWiMWGYUj25UJzf_-H8L_gTyEKYRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146512950</pqid></control><display><type>article</type><title>A geospatial approach for dynamic on-road emission through open-access floating car data</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Fung, Pak Lun ; Al-Jaghbeer, Omar ; Chen, Jia ; Paunu, Ville-Veikko ; Vosough, Shaghayegh ; Roncoli, Claudio ; Järvi, Leena</creator><creatorcontrib>Fung, Pak Lun ; Al-Jaghbeer, Omar ; Chen, Jia ; Paunu, Ville-Veikko ; Vosough, Shaghayegh ; Roncoli, Claudio ; Järvi, Leena</creatorcontrib><description>This paper presents a geospatial approach for quantifying street-level on-road emissions of carbon dioxide (CO 2 ), nitrogen oxides (NO x ), and carbon monoxide (CO). By leveraging an existing open-access database of real-time congestion information derived from floating car data, we tested three methods to map high-resolution dynamic traffic emissions. To demonstrate the robustness and accuracy of the methods, we showcased results for summer workdays and winter weekends in the Helsinki Metropolitan Area (HMA). The three methods employed include (1) a physics-based relation known as the macroscopic fundamental diagram, (2) a data-driven input-adaptive generalized linear model (GLM), and (3) their ensemble (ENS). These methods estimated traffic density with satisfactory accuracy ( R 2 = 0.60–0.88, sMAPE = 31%–68%). Utilizing speed-dependent emission factors retrieved from a European database, the results compared favorably against the downscaled national emission inventory, particularly for CO 2 ( R 2 = 0.70–0.77). Among the three methods, GLM exhibited the best overall performance in the HMA, while ENS provided a robust upscaling solution. The modeled emissions exhibited dynamic diurnal and spatial behavior, influenced by different functional road classes, fleet compositions and congestion patterns. Congestion-induced emissions were calculated to account for up to 10% of the total vehicular emissions. Furthermore, to anticipate the forthcoming transportation transformation, we calculated emission changes under scenarios with various penetration rates of connected and autonomous vehicles (CAVs) using this geospatial approach. The introduction of CAVs could result in emission reductions of 3%–14% owing to congestion improvements.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ad984d</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>air pollution ; Carbon dioxide ; Carbon monoxide ; climate change ; congestion ; Emission inventories ; Emissions ; Emissions control ; Generalized linear models ; GIS ; Metropolitan areas ; Nitrogen oxides ; open-access ; Photochemicals ; Real time ; Roads ; spatial analysis ; Statistical models ; Traffic congestion ; traffic emission ; Traffic volume ; Vehicle emissions</subject><ispartof>Environmental research letters, 2025-01, Vol.20 (1), p.14033</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-74d151de8052ffdff8b6579ff59e0b5e3716a7917bdb606f844b23ac02ae9ca13</cites><orcidid>0000-0002-9381-3021 ; 0000-0002-6350-6610 ; 0000-0003-0197-8214 ; 0000-0002-5224-3448 ; 0000-0003-3493-1383 ; 0000-0002-3466-4169 ; 0000-0002-1077-5526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3146512950?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Fung, Pak Lun</creatorcontrib><creatorcontrib>Al-Jaghbeer, Omar</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Paunu, Ville-Veikko</creatorcontrib><creatorcontrib>Vosough, Shaghayegh</creatorcontrib><creatorcontrib>Roncoli, Claudio</creatorcontrib><creatorcontrib>Järvi, Leena</creatorcontrib><title>A geospatial approach for dynamic on-road emission through open-access floating car data</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>This paper presents a geospatial approach for quantifying street-level on-road emissions of carbon dioxide (CO 2 ), nitrogen oxides (NO x ), and carbon monoxide (CO). By leveraging an existing open-access database of real-time congestion information derived from floating car data, we tested three methods to map high-resolution dynamic traffic emissions. To demonstrate the robustness and accuracy of the methods, we showcased results for summer workdays and winter weekends in the Helsinki Metropolitan Area (HMA). The three methods employed include (1) a physics-based relation known as the macroscopic fundamental diagram, (2) a data-driven input-adaptive generalized linear model (GLM), and (3) their ensemble (ENS). These methods estimated traffic density with satisfactory accuracy ( R 2 = 0.60–0.88, sMAPE = 31%–68%). Utilizing speed-dependent emission factors retrieved from a European database, the results compared favorably against the downscaled national emission inventory, particularly for CO 2 ( R 2 = 0.70–0.77). Among the three methods, GLM exhibited the best overall performance in the HMA, while ENS provided a robust upscaling solution. The modeled emissions exhibited dynamic diurnal and spatial behavior, influenced by different functional road classes, fleet compositions and congestion patterns. Congestion-induced emissions were calculated to account for up to 10% of the total vehicular emissions. Furthermore, to anticipate the forthcoming transportation transformation, we calculated emission changes under scenarios with various penetration rates of connected and autonomous vehicles (CAVs) using this geospatial approach. The introduction of CAVs could result in emission reductions of 3%–14% owing to congestion improvements.</description><subject>air pollution</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>climate change</subject><subject>congestion</subject><subject>Emission inventories</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Generalized linear models</subject><subject>GIS</subject><subject>Metropolitan areas</subject><subject>Nitrogen oxides</subject><subject>open-access</subject><subject>Photochemicals</subject><subject>Real time</subject><subject>Roads</subject><subject>spatial analysis</subject><subject>Statistical models</subject><subject>Traffic congestion</subject><subject>traffic emission</subject><subject>Traffic volume</subject><subject>Vehicle emissions</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1P3DAQxSMEUmHhztESBy5NsWM7to8rRAEJiQtI3KzxVzarbBzs7IH_Hm9T0R7a01hP7_3GelNVlwT_IFjKGyKYrBVt2htwSjJ3VJ1-Scd_vb9VZzlvMeaMC3lava1R52OeYO5hQDBNKYLdoBATch8j7HqL4lgX0SG_63Pu44jmTYr7boPi5McarPU5ozDEghg7ZKEkYYbz6iTAkP3F77mqXn_evdw-1E_P94-366faNlLNtWCOcOK8xLwJwYUgTcuFCoErjw33VJAWhCLCONPiNkjGTEPB4ga8skDoqnpcuC7CVk-p30H60BF6_UuIqdOQ5t4OXhvlJLWUe-5ZwTBpwTLKTBAmUCNUYV0trNLC-97nWW_jPo3l-5oS1nLSKI6LCy8um2LOyYevrQTrwy30oWx9KFsvtyiR6yXSx-kP06dBNyWiMWGYUj25UJzf_-H8L_gTyEKYRA</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Fung, Pak Lun</creator><creator>Al-Jaghbeer, Omar</creator><creator>Chen, Jia</creator><creator>Paunu, Ville-Veikko</creator><creator>Vosough, Shaghayegh</creator><creator>Roncoli, Claudio</creator><creator>Järvi, Leena</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9381-3021</orcidid><orcidid>https://orcid.org/0000-0002-6350-6610</orcidid><orcidid>https://orcid.org/0000-0003-0197-8214</orcidid><orcidid>https://orcid.org/0000-0002-5224-3448</orcidid><orcidid>https://orcid.org/0000-0003-3493-1383</orcidid><orcidid>https://orcid.org/0000-0002-3466-4169</orcidid><orcidid>https://orcid.org/0000-0002-1077-5526</orcidid></search><sort><creationdate>20250101</creationdate><title>A geospatial approach for dynamic on-road emission through open-access floating car data</title><author>Fung, Pak Lun ; Al-Jaghbeer, Omar ; Chen, Jia ; Paunu, Ville-Veikko ; Vosough, Shaghayegh ; Roncoli, Claudio ; Järvi, Leena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-74d151de8052ffdff8b6579ff59e0b5e3716a7917bdb606f844b23ac02ae9ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>air pollution</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>climate change</topic><topic>congestion</topic><topic>Emission inventories</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Generalized linear models</topic><topic>GIS</topic><topic>Metropolitan areas</topic><topic>Nitrogen oxides</topic><topic>open-access</topic><topic>Photochemicals</topic><topic>Real time</topic><topic>Roads</topic><topic>spatial analysis</topic><topic>Statistical models</topic><topic>Traffic congestion</topic><topic>traffic emission</topic><topic>Traffic volume</topic><topic>Vehicle emissions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fung, Pak Lun</creatorcontrib><creatorcontrib>Al-Jaghbeer, Omar</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Paunu, Ville-Veikko</creatorcontrib><creatorcontrib>Vosough, Shaghayegh</creatorcontrib><creatorcontrib>Roncoli, Claudio</creatorcontrib><creatorcontrib>Järvi, Leena</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fung, Pak Lun</au><au>Al-Jaghbeer, Omar</au><au>Chen, Jia</au><au>Paunu, Ville-Veikko</au><au>Vosough, Shaghayegh</au><au>Roncoli, Claudio</au><au>Järvi, Leena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A geospatial approach for dynamic on-road emission through open-access floating car data</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>20</volume><issue>1</issue><spage>14033</spage><pages>14033-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>This paper presents a geospatial approach for quantifying street-level on-road emissions of carbon dioxide (CO 2 ), nitrogen oxides (NO x ), and carbon monoxide (CO). By leveraging an existing open-access database of real-time congestion information derived from floating car data, we tested three methods to map high-resolution dynamic traffic emissions. To demonstrate the robustness and accuracy of the methods, we showcased results for summer workdays and winter weekends in the Helsinki Metropolitan Area (HMA). The three methods employed include (1) a physics-based relation known as the macroscopic fundamental diagram, (2) a data-driven input-adaptive generalized linear model (GLM), and (3) their ensemble (ENS). These methods estimated traffic density with satisfactory accuracy ( R 2 = 0.60–0.88, sMAPE = 31%–68%). Utilizing speed-dependent emission factors retrieved from a European database, the results compared favorably against the downscaled national emission inventory, particularly for CO 2 ( R 2 = 0.70–0.77). Among the three methods, GLM exhibited the best overall performance in the HMA, while ENS provided a robust upscaling solution. The modeled emissions exhibited dynamic diurnal and spatial behavior, influenced by different functional road classes, fleet compositions and congestion patterns. Congestion-induced emissions were calculated to account for up to 10% of the total vehicular emissions. Furthermore, to anticipate the forthcoming transportation transformation, we calculated emission changes under scenarios with various penetration rates of connected and autonomous vehicles (CAVs) using this geospatial approach. The introduction of CAVs could result in emission reductions of 3%–14% owing to congestion improvements.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ad984d</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-9381-3021</orcidid><orcidid>https://orcid.org/0000-0002-6350-6610</orcidid><orcidid>https://orcid.org/0000-0003-0197-8214</orcidid><orcidid>https://orcid.org/0000-0002-5224-3448</orcidid><orcidid>https://orcid.org/0000-0003-3493-1383</orcidid><orcidid>https://orcid.org/0000-0002-3466-4169</orcidid><orcidid>https://orcid.org/0000-0002-1077-5526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-9326
ispartof Environmental research letters, 2025-01, Vol.20 (1), p.14033
issn 1748-9326
1748-9326
language eng
recordid cdi_proquest_journals_3146512950
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects air pollution
Carbon dioxide
Carbon monoxide
climate change
congestion
Emission inventories
Emissions
Emissions control
Generalized linear models
GIS
Metropolitan areas
Nitrogen oxides
open-access
Photochemicals
Real time
Roads
spatial analysis
Statistical models
Traffic congestion
traffic emission
Traffic volume
Vehicle emissions
title A geospatial approach for dynamic on-road emission through open-access floating car data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20geospatial%20approach%20for%20dynamic%20on-road%20emission%20through%20open-access%20floating%20car%20data&rft.jtitle=Environmental%20research%20letters&rft.au=Fung,%20Pak%20Lun&rft.date=2025-01-01&rft.volume=20&rft.issue=1&rft.spage=14033&rft.pages=14033-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ad984d&rft_dat=%3Cproquest_cross%3E3146512950%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-74d151de8052ffdff8b6579ff59e0b5e3716a7917bdb606f844b23ac02ae9ca13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146512950&rft_id=info:pmid/&rfr_iscdi=true