Loading…
A Comparative Study: Can Large Language Models Beat Radiologists on PI-RADSv2.1-Related Questions?
PurposeThis study evaluates the accuracy of various large language models (LLMs) and compares them with radiologists in answering multiple-choice questions (MCQs) related to Prostate Imaging–Reporting and Data System version 2.1 (PI-RADSv2.1).MethodsThis cross-sectional study utilizes one-hundred MC...
Saved in:
Published in: | Journal of medical and biological engineering 2024-12, Vol.44 (6), p.821-830 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | PurposeThis study evaluates the accuracy of various large language models (LLMs) and compares them with radiologists in answering multiple-choice questions (MCQs) related to Prostate Imaging–Reporting and Data System version 2.1 (PI-RADSv2.1).MethodsThis cross-sectional study utilizes one-hundred MCQs covering all sections of PI-RADSv2.1 were prepared and asked twelve different LLMs, including Claude 3 Opus, Claude Sonnet, ChatGPT models (ChatGPT 4o, ChatGPT 4 Turbo, ChatGPT 4, ChatGPT 3.5), Google Gemini models (Gemini 1.5 pro, Gemini 1.0), Microsoft Copilot, Perplexity, Meta Llama 3 70B, and Mistral Large. Two board-certified (EDiR) radiologists (radiologist 1,2) also answered the questions independently. Non-parametric tests were used for statistical analysis due to the non-normal distribution of data.ResultsClaude 3 Opus achieved the highest accuracy rate (85%) among the LLMs, followed by ChatGPT 4 Turbo (82%) and ChatGPT 4o (80%), ChatGPT 4 (79%), Gemini 1.5pro (79%) both radiologists (79% each). There was no significant difference in performance among Claude 3 Opus, ChatGPT 4 models, Gemini 1.5 Pro, and radiologists (p > 0.05).ConclusionThe fact that Claude 3 Opus shows better results than all other LLMs (including the newest ChatGPT 4o) raises the question of whether it could be a new game changer among LLMs. The high accuracy rates of Claude 3 Opus, ChatGPT 4 models, and Gemini 1.5 Pro, comparable to those of radiologists, highlight their potential as clinical decision support tools. This study highlights the potential of LLMs in radiology, suggesting a transformative impact on diagnostic accuracy and efficiency. |
---|---|
ISSN: | 1609-0985 2199-4757 |
DOI: | 10.1007/s40846-024-00914-3 |