Loading…
Connected Equitable Cake Division via Sperner's Lemma
We study the problem of fair cake-cutting where each agent receives a connected piece of the cake. A division of the cake is deemed fair if it is equitable, which means that all agents derive the same value from their assigned piece. Prior work has established the existence of a connected equitable...
Saved in:
Published in: | arXiv.org 2024-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the problem of fair cake-cutting where each agent receives a connected piece of the cake. A division of the cake is deemed fair if it is equitable, which means that all agents derive the same value from their assigned piece. Prior work has established the existence of a connected equitable division for agents with nonnegative valuations using various techniques. We provide a simple proof of this result using Sperner's lemma. Our proof extends known existence results for connected equitable divisions to significantly more general classes of valuations, including nonnegative valuations with externalities, as well as several interesting subclasses of general (possibly negative) valuations. |
---|---|
ISSN: | 2331-8422 |