Loading…
Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations
In this paper, we consider a class of reflected stochastic differential equations for which the constraint is not on the paths of the solution but on its law. We establish a small noise large deviation principle, a large deviation for short time, the Malliavin derivative and the smoothness of the de...
Saved in:
Published in: | Stochastics (Abingdon, Eng. : 2005) Eng. : 2005), 2024-11, Vol.96 (7), p.1913-1927 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-b625b2832fad20767b1966be6609f7e89ffd518cb39b7470ce2c9ea3ecc358263 |
container_end_page | 1927 |
container_issue | 7 |
container_start_page | 1913 |
container_title | Stochastics (Abingdon, Eng. : 2005) |
container_volume | 96 |
creator | Chen, Ping Zhai, Jianliang |
description | In this paper, we consider a class of reflected stochastic differential equations for which the constraint is not on the paths of the solution but on its law. We establish a small noise large deviation principle, a large deviation for short time, the Malliavin derivative and the smoothness of the density. To prove large deviation principles, a sufficient condition for the weak convergence method, which is suitable for Mckean-Vlasov stochastic differential equation, plays an important role. |
doi_str_mv | 10.1080/17442508.2024.2365216 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147273383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147273383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-b625b2832fad20767b1966be6609f7e89ffd518cb39b7470ce2c9ea3ecc358263</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwE5AscU7xI7GdG6jiJRVxgbPlOGvqKnVaOw3qv8ehhSOnXa1mZjVfll0TPCNY4lsiioKWWM4opsWMMl5Swk-yyXjPaUn46d-O5Xl2EeMK44IyhifZcqHDJ6AGBqd713m0Cc4bt2khIu0b9Krb1unB-SQJbkiaAZDtAlqD9iiAbcH00KDYd2apY-8Mapy1EMD3TrcItruf3HiZnVndRrg6zmn28fjwPn_OF29PL_P7RW4oZ31ec1rWVDJqdUOx4KImFec1cI4rK0BW1jYlkaZmVS0KgQ1QU4FmYAwrZYqYZjeH3E3otjuIvVp1u-DTS8VIIahgTLKkKg8qE7oYUw2Veq912CuC1QhV_UJVI1R1hJp8dwef8wnCWn91oW1Ur_dtF2zQidz45t-Ib8dtf7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147273383</pqid></control><display><type>article</type><title>Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Chen, Ping ; Zhai, Jianliang</creator><creatorcontrib>Chen, Ping ; Zhai, Jianliang</creatorcontrib><description>In this paper, we consider a class of reflected stochastic differential equations for which the constraint is not on the paths of the solution but on its law. We establish a small noise large deviation principle, a large deviation for short time, the Malliavin derivative and the smoothness of the density. To prove large deviation principles, a sufficient condition for the weak convergence method, which is suitable for Mckean-Vlasov stochastic differential equation, plays an important role.</description><identifier>ISSN: 1744-2508</identifier><identifier>EISSN: 1744-2516</identifier><identifier>DOI: 10.1080/17442508.2024.2365216</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Deviation ; Differential equations ; large derivative principle ; Malliavin derivative ; Mean reflected stochastic differential equation ; Smoothness ; weak convergence method</subject><ispartof>Stochastics (Abingdon, Eng. : 2005), 2024-11, Vol.96 (7), p.1913-1927</ispartof><rights>2024 Informa UK Limited, trading as Taylor & Francis Group 2024</rights><rights>2024 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-b625b2832fad20767b1966be6609f7e89ffd518cb39b7470ce2c9ea3ecc358263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Zhai, Jianliang</creatorcontrib><title>Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations</title><title>Stochastics (Abingdon, Eng. : 2005)</title><description>In this paper, we consider a class of reflected stochastic differential equations for which the constraint is not on the paths of the solution but on its law. We establish a small noise large deviation principle, a large deviation for short time, the Malliavin derivative and the smoothness of the density. To prove large deviation principles, a sufficient condition for the weak convergence method, which is suitable for Mckean-Vlasov stochastic differential equation, plays an important role.</description><subject>Deviation</subject><subject>Differential equations</subject><subject>large derivative principle</subject><subject>Malliavin derivative</subject><subject>Mean reflected stochastic differential equation</subject><subject>Smoothness</subject><subject>weak convergence method</subject><issn>1744-2508</issn><issn>1744-2516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqXwE5AscU7xI7GdG6jiJRVxgbPlOGvqKnVaOw3qv8ehhSOnXa1mZjVfll0TPCNY4lsiioKWWM4opsWMMl5Swk-yyXjPaUn46d-O5Xl2EeMK44IyhifZcqHDJ6AGBqd713m0Cc4bt2khIu0b9Krb1unB-SQJbkiaAZDtAlqD9iiAbcH00KDYd2apY-8Mapy1EMD3TrcItruf3HiZnVndRrg6zmn28fjwPn_OF29PL_P7RW4oZ31ec1rWVDJqdUOx4KImFec1cI4rK0BW1jYlkaZmVS0KgQ1QU4FmYAwrZYqYZjeH3E3otjuIvVp1u-DTS8VIIahgTLKkKg8qE7oYUw2Veq912CuC1QhV_UJVI1R1hJp8dwef8wnCWn91oW1Ur_dtF2zQidz45t-Ib8dtf7s</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Chen, Ping</creator><creator>Zhai, Jianliang</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations</title><author>Chen, Ping ; Zhai, Jianliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-b625b2832fad20767b1966be6609f7e89ffd518cb39b7470ce2c9ea3ecc358263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deviation</topic><topic>Differential equations</topic><topic>large derivative principle</topic><topic>Malliavin derivative</topic><topic>Mean reflected stochastic differential equation</topic><topic>Smoothness</topic><topic>weak convergence method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Zhai, Jianliang</creatorcontrib><collection>CrossRef</collection><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ping</au><au>Zhai, Jianliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations</atitle><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>96</volume><issue>7</issue><spage>1913</spage><epage>1927</epage><pages>1913-1927</pages><issn>1744-2508</issn><eissn>1744-2516</eissn><abstract>In this paper, we consider a class of reflected stochastic differential equations for which the constraint is not on the paths of the solution but on its law. We establish a small noise large deviation principle, a large deviation for short time, the Malliavin derivative and the smoothness of the density. To prove large deviation principles, a sufficient condition for the weak convergence method, which is suitable for Mckean-Vlasov stochastic differential equation, plays an important role.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/17442508.2024.2365216</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-2508 |
ispartof | Stochastics (Abingdon, Eng. : 2005), 2024-11, Vol.96 (7), p.1913-1927 |
issn | 1744-2508 1744-2516 |
language | eng |
recordid | cdi_proquest_journals_3147273383 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Deviation Differential equations large derivative principle Malliavin derivative Mean reflected stochastic differential equation Smoothness weak convergence method |
title | Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20deviation%20principles%20and%20Malliavin%20derivative%20for%20mean%20reflected%20stochastic%20differential%20equations&rft.jtitle=Stochastics%20(Abingdon,%20Eng.%20:%202005)&rft.au=Chen,%20Ping&rft.date=2024-11-01&rft.volume=96&rft.issue=7&rft.spage=1913&rft.epage=1927&rft.pages=1913-1927&rft.issn=1744-2508&rft.eissn=1744-2516&rft_id=info:doi/10.1080/17442508.2024.2365216&rft_dat=%3Cproquest_cross%3E3147273383%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-b625b2832fad20767b1966be6609f7e89ffd518cb39b7470ce2c9ea3ecc358263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3147273383&rft_id=info:pmid/&rfr_iscdi=true |