Loading…

Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations

In this paper, we consider a class of reflected stochastic differential equations for which the constraint is not on the paths of the solution but on its law. We establish a small noise large deviation principle, a large deviation for short time, the Malliavin derivative and the smoothness of the de...

Full description

Saved in:
Bibliographic Details
Published in:Stochastics (Abingdon, Eng. : 2005) Eng. : 2005), 2024-11, Vol.96 (7), p.1913-1927
Main Authors: Chen, Ping, Zhai, Jianliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c263t-b625b2832fad20767b1966be6609f7e89ffd518cb39b7470ce2c9ea3ecc358263
container_end_page 1927
container_issue 7
container_start_page 1913
container_title Stochastics (Abingdon, Eng. : 2005)
container_volume 96
creator Chen, Ping
Zhai, Jianliang
description In this paper, we consider a class of reflected stochastic differential equations for which the constraint is not on the paths of the solution but on its law. We establish a small noise large deviation principle, a large deviation for short time, the Malliavin derivative and the smoothness of the density. To prove large deviation principles, a sufficient condition for the weak convergence method, which is suitable for Mckean-Vlasov stochastic differential equation, plays an important role.
doi_str_mv 10.1080/17442508.2024.2365216
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147273383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147273383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-b625b2832fad20767b1966be6609f7e89ffd518cb39b7470ce2c9ea3ecc358263</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwE5AscU7xI7GdG6jiJRVxgbPlOGvqKnVaOw3qv8ehhSOnXa1mZjVfll0TPCNY4lsiioKWWM4opsWMMl5Swk-yyXjPaUn46d-O5Xl2EeMK44IyhifZcqHDJ6AGBqd713m0Cc4bt2khIu0b9Krb1unB-SQJbkiaAZDtAlqD9iiAbcH00KDYd2apY-8Mapy1EMD3TrcItruf3HiZnVndRrg6zmn28fjwPn_OF29PL_P7RW4oZ31ec1rWVDJqdUOx4KImFec1cI4rK0BW1jYlkaZmVS0KgQ1QU4FmYAwrZYqYZjeH3E3otjuIvVp1u-DTS8VIIahgTLKkKg8qE7oYUw2Veq912CuC1QhV_UJVI1R1hJp8dwef8wnCWn91oW1Ur_dtF2zQidz45t-Ib8dtf7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147273383</pqid></control><display><type>article</type><title>Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Chen, Ping ; Zhai, Jianliang</creator><creatorcontrib>Chen, Ping ; Zhai, Jianliang</creatorcontrib><description>In this paper, we consider a class of reflected stochastic differential equations for which the constraint is not on the paths of the solution but on its law. We establish a small noise large deviation principle, a large deviation for short time, the Malliavin derivative and the smoothness of the density. To prove large deviation principles, a sufficient condition for the weak convergence method, which is suitable for Mckean-Vlasov stochastic differential equation, plays an important role.</description><identifier>ISSN: 1744-2508</identifier><identifier>EISSN: 1744-2516</identifier><identifier>DOI: 10.1080/17442508.2024.2365216</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Deviation ; Differential equations ; large derivative principle ; Malliavin derivative ; Mean reflected stochastic differential equation ; Smoothness ; weak convergence method</subject><ispartof>Stochastics (Abingdon, Eng. : 2005), 2024-11, Vol.96 (7), p.1913-1927</ispartof><rights>2024 Informa UK Limited, trading as Taylor &amp; Francis Group 2024</rights><rights>2024 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-b625b2832fad20767b1966be6609f7e89ffd518cb39b7470ce2c9ea3ecc358263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Zhai, Jianliang</creatorcontrib><title>Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations</title><title>Stochastics (Abingdon, Eng. : 2005)</title><description>In this paper, we consider a class of reflected stochastic differential equations for which the constraint is not on the paths of the solution but on its law. We establish a small noise large deviation principle, a large deviation for short time, the Malliavin derivative and the smoothness of the density. To prove large deviation principles, a sufficient condition for the weak convergence method, which is suitable for Mckean-Vlasov stochastic differential equation, plays an important role.</description><subject>Deviation</subject><subject>Differential equations</subject><subject>large derivative principle</subject><subject>Malliavin derivative</subject><subject>Mean reflected stochastic differential equation</subject><subject>Smoothness</subject><subject>weak convergence method</subject><issn>1744-2508</issn><issn>1744-2516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqXwE5AscU7xI7GdG6jiJRVxgbPlOGvqKnVaOw3qv8ehhSOnXa1mZjVfll0TPCNY4lsiioKWWM4opsWMMl5Swk-yyXjPaUn46d-O5Xl2EeMK44IyhifZcqHDJ6AGBqd713m0Cc4bt2khIu0b9Krb1unB-SQJbkiaAZDtAlqD9iiAbcH00KDYd2apY-8Mapy1EMD3TrcItruf3HiZnVndRrg6zmn28fjwPn_OF29PL_P7RW4oZ31ec1rWVDJqdUOx4KImFec1cI4rK0BW1jYlkaZmVS0KgQ1QU4FmYAwrZYqYZjeH3E3otjuIvVp1u-DTS8VIIahgTLKkKg8qE7oYUw2Veq912CuC1QhV_UJVI1R1hJp8dwef8wnCWn91oW1Ur_dtF2zQidz45t-Ib8dtf7s</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Chen, Ping</creator><creator>Zhai, Jianliang</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations</title><author>Chen, Ping ; Zhai, Jianliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-b625b2832fad20767b1966be6609f7e89ffd518cb39b7470ce2c9ea3ecc358263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deviation</topic><topic>Differential equations</topic><topic>large derivative principle</topic><topic>Malliavin derivative</topic><topic>Mean reflected stochastic differential equation</topic><topic>Smoothness</topic><topic>weak convergence method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Zhai, Jianliang</creatorcontrib><collection>CrossRef</collection><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ping</au><au>Zhai, Jianliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations</atitle><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>96</volume><issue>7</issue><spage>1913</spage><epage>1927</epage><pages>1913-1927</pages><issn>1744-2508</issn><eissn>1744-2516</eissn><abstract>In this paper, we consider a class of reflected stochastic differential equations for which the constraint is not on the paths of the solution but on its law. We establish a small noise large deviation principle, a large deviation for short time, the Malliavin derivative and the smoothness of the density. To prove large deviation principles, a sufficient condition for the weak convergence method, which is suitable for Mckean-Vlasov stochastic differential equation, plays an important role.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17442508.2024.2365216</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-2508
ispartof Stochastics (Abingdon, Eng. : 2005), 2024-11, Vol.96 (7), p.1913-1927
issn 1744-2508
1744-2516
language eng
recordid cdi_proquest_journals_3147273383
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Deviation
Differential equations
large derivative principle
Malliavin derivative
Mean reflected stochastic differential equation
Smoothness
weak convergence method
title Large deviation principles and Malliavin derivative for mean reflected stochastic differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20deviation%20principles%20and%20Malliavin%20derivative%20for%20mean%20reflected%20stochastic%20differential%20equations&rft.jtitle=Stochastics%20(Abingdon,%20Eng.%20:%202005)&rft.au=Chen,%20Ping&rft.date=2024-11-01&rft.volume=96&rft.issue=7&rft.spage=1913&rft.epage=1927&rft.pages=1913-1927&rft.issn=1744-2508&rft.eissn=1744-2516&rft_id=info:doi/10.1080/17442508.2024.2365216&rft_dat=%3Cproquest_cross%3E3147273383%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-b625b2832fad20767b1966be6609f7e89ffd518cb39b7470ce2c9ea3ecc358263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3147273383&rft_id=info:pmid/&rfr_iscdi=true