Loading…
An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve
Online identification on the health state parameters of thyristor modules in the HVdc converter is important to ensure the safe operation of the equipment. This article constructs a digital twin model of six-pulse converter by analyzing its working principle, the specific topology of thyristor modul...
Saved in:
Published in: | IEEE transactions on dielectrics and electrical insulation 2024-12, Vol.31 (6), p.2974-2983 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c176t-d629febaff63f9a3a178c90333bd648350379af0afda268f312dcfbc78091003 |
container_end_page | 2983 |
container_issue | 6 |
container_start_page | 2974 |
container_title | IEEE transactions on dielectrics and electrical insulation |
container_volume | 31 |
creator | Pang, Lei Xia, Boyang Wang, Xinbing Cao, Zhaohan He, Kun Huang, Yongrui |
description | Online identification on the health state parameters of thyristor modules in the HVdc converter is important to ensure the safe operation of the equipment. This article constructs a digital twin model of six-pulse converter by analyzing its working principle, the specific topology of thyristor modules in the valve assembly, and the available system information in practical engineering. The Runge-Kutta (RK) method is used to discretize the state equations of the six-pulse converter and to deduce the output data of digital twin model. The simulation results from a MATLAB/SIMULINK model of the six-pulse converter are utilized instead of the data from the actual physical model. According to the data from the simulated physical model and the digital twin model, the optimization objective function for the parameter identification is determined. Then, the equivalent insulation resistance and the damping capacitance parameters of each thyristor module are identified with the particle swarm optimization (PSO) algorithm. The results indicate that the identified equivalent insulation resistance and damping capacitance parameters have a maximum deviation of 7% from the true values. The identification errors of the damping capacitances are less than that of the equivalent insulation resistance, which is consistent with the trajectory sensitivity analysis. The contrast results show that the method in this article has better identification accuracy and noise immunity than those of the previous study. The proposed method provides a convenient solution for the intelligent maintenance of HVdc converter valves, without a large number of external sensors. |
doi_str_mv | 10.1109/TDEI.2024.3417962 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3147528387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10568964</ieee_id><sourcerecordid>3147528387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-d629febaff63f9a3a178c90333bd648350379af0afda268f312dcfbc78091003</originalsourceid><addsrcrecordid>eNpNkEtrAjEUhUNpodb2BxS6CHQ9No-ZPJZiHwqKhQ5uhzhzg5FxYpMo-O87oouu7ll851z4EHqmZEQp0W_l-8dsxAjLRzynUgt2gwa0KFSWU17c9plIkmkl1T16iHFLCM0LJgZoM-7wsmtdB3jWQJecdbVJznd4AWnjG2x9wFMwbdrgn2QS4G8TzA4ShIi9xeXmFFxMPbTwzaGFiF2Hp6umxhPfHSH0HF6Z9giP6M6aNsLT9Q5R-flRTqbZfPk1m4znWU2lSFkjmLawNtYKbrXhhkpVa8I5XzciV7wgXGpjibGNYUJZTllT23UtFdGUED5Er5fZffC_B4ip2vpD6PqPFae5LJjiSvYUvVB18DEGsNU-uJ0Jp4qS6uyzOvuszj6rq8--83LpOAD4xxdCaZHzP82Qcd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147528387</pqid></control><display><type>article</type><title>An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve</title><source>IEEE Xplore (Online service)</source><creator>Pang, Lei ; Xia, Boyang ; Wang, Xinbing ; Cao, Zhaohan ; He, Kun ; Huang, Yongrui</creator><creatorcontrib>Pang, Lei ; Xia, Boyang ; Wang, Xinbing ; Cao, Zhaohan ; He, Kun ; Huang, Yongrui</creatorcontrib><description>Online identification on the health state parameters of thyristor modules in the HVdc converter is important to ensure the safe operation of the equipment. This article constructs a digital twin model of six-pulse converter by analyzing its working principle, the specific topology of thyristor modules in the valve assembly, and the available system information in practical engineering. The Runge-Kutta (RK) method is used to discretize the state equations of the six-pulse converter and to deduce the output data of digital twin model. The simulation results from a MATLAB/SIMULINK model of the six-pulse converter are utilized instead of the data from the actual physical model. According to the data from the simulated physical model and the digital twin model, the optimization objective function for the parameter identification is determined. Then, the equivalent insulation resistance and the damping capacitance parameters of each thyristor module are identified with the particle swarm optimization (PSO) algorithm. The results indicate that the identified equivalent insulation resistance and damping capacitance parameters have a maximum deviation of 7% from the true values. The identification errors of the damping capacitances are less than that of the equivalent insulation resistance, which is consistent with the trajectory sensitivity analysis. The contrast results show that the method in this article has better identification accuracy and noise immunity than those of the previous study. The proposed method provides a convenient solution for the intelligent maintenance of HVdc converter valves, without a large number of external sensors.</description><identifier>ISSN: 1070-9878</identifier><identifier>EISSN: 1558-4135</identifier><identifier>DOI: 10.1109/TDEI.2024.3417962</identifier><identifier>CODEN: ITDIES</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Capacitance ; Condition monitoring ; Damping ; digital twin ; Digital twins ; Equations of state ; Equivalence ; HVdc thyristor converter valve ; HVDC transmission ; Identification methods ; Insulation ; Mathematical models ; Modules ; Monitoring ; Noise sensitivity ; Parameter identification ; Parameter sensitivity ; Particle swarm optimization ; Pulse converters ; Resistance ; Runge-Kutta method ; Sensitivity analysis ; Thyristors ; Topology ; Valves</subject><ispartof>IEEE transactions on dielectrics and electrical insulation, 2024-12, Vol.31 (6), p.2974-2983</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-d629febaff63f9a3a178c90333bd648350379af0afda268f312dcfbc78091003</cites><orcidid>0000-0002-7295-3922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10568964$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Pang, Lei</creatorcontrib><creatorcontrib>Xia, Boyang</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><creatorcontrib>Cao, Zhaohan</creatorcontrib><creatorcontrib>He, Kun</creatorcontrib><creatorcontrib>Huang, Yongrui</creatorcontrib><title>An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve</title><title>IEEE transactions on dielectrics and electrical insulation</title><addtitle>T-DEI</addtitle><description>Online identification on the health state parameters of thyristor modules in the HVdc converter is important to ensure the safe operation of the equipment. This article constructs a digital twin model of six-pulse converter by analyzing its working principle, the specific topology of thyristor modules in the valve assembly, and the available system information in practical engineering. The Runge-Kutta (RK) method is used to discretize the state equations of the six-pulse converter and to deduce the output data of digital twin model. The simulation results from a MATLAB/SIMULINK model of the six-pulse converter are utilized instead of the data from the actual physical model. According to the data from the simulated physical model and the digital twin model, the optimization objective function for the parameter identification is determined. Then, the equivalent insulation resistance and the damping capacitance parameters of each thyristor module are identified with the particle swarm optimization (PSO) algorithm. The results indicate that the identified equivalent insulation resistance and damping capacitance parameters have a maximum deviation of 7% from the true values. The identification errors of the damping capacitances are less than that of the equivalent insulation resistance, which is consistent with the trajectory sensitivity analysis. The contrast results show that the method in this article has better identification accuracy and noise immunity than those of the previous study. The proposed method provides a convenient solution for the intelligent maintenance of HVdc converter valves, without a large number of external sensors.</description><subject>Algorithms</subject><subject>Capacitance</subject><subject>Condition monitoring</subject><subject>Damping</subject><subject>digital twin</subject><subject>Digital twins</subject><subject>Equations of state</subject><subject>Equivalence</subject><subject>HVdc thyristor converter valve</subject><subject>HVDC transmission</subject><subject>Identification methods</subject><subject>Insulation</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Monitoring</subject><subject>Noise sensitivity</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Particle swarm optimization</subject><subject>Pulse converters</subject><subject>Resistance</subject><subject>Runge-Kutta method</subject><subject>Sensitivity analysis</subject><subject>Thyristors</subject><subject>Topology</subject><subject>Valves</subject><issn>1070-9878</issn><issn>1558-4135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtrAjEUhUNpodb2BxS6CHQ9No-ZPJZiHwqKhQ5uhzhzg5FxYpMo-O87oouu7ll851z4EHqmZEQp0W_l-8dsxAjLRzynUgt2gwa0KFSWU17c9plIkmkl1T16iHFLCM0LJgZoM-7wsmtdB3jWQJecdbVJznd4AWnjG2x9wFMwbdrgn2QS4G8TzA4ShIi9xeXmFFxMPbTwzaGFiF2Hp6umxhPfHSH0HF6Z9giP6M6aNsLT9Q5R-flRTqbZfPk1m4znWU2lSFkjmLawNtYKbrXhhkpVa8I5XzciV7wgXGpjibGNYUJZTllT23UtFdGUED5Er5fZffC_B4ip2vpD6PqPFae5LJjiSvYUvVB18DEGsNU-uJ0Jp4qS6uyzOvuszj6rq8--83LpOAD4xxdCaZHzP82Qcd0</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Pang, Lei</creator><creator>Xia, Boyang</creator><creator>Wang, Xinbing</creator><creator>Cao, Zhaohan</creator><creator>He, Kun</creator><creator>Huang, Yongrui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7295-3922</orcidid></search><sort><creationdate>202412</creationdate><title>An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve</title><author>Pang, Lei ; Xia, Boyang ; Wang, Xinbing ; Cao, Zhaohan ; He, Kun ; Huang, Yongrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-d629febaff63f9a3a178c90333bd648350379af0afda268f312dcfbc78091003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Capacitance</topic><topic>Condition monitoring</topic><topic>Damping</topic><topic>digital twin</topic><topic>Digital twins</topic><topic>Equations of state</topic><topic>Equivalence</topic><topic>HVdc thyristor converter valve</topic><topic>HVDC transmission</topic><topic>Identification methods</topic><topic>Insulation</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Monitoring</topic><topic>Noise sensitivity</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Particle swarm optimization</topic><topic>Pulse converters</topic><topic>Resistance</topic><topic>Runge-Kutta method</topic><topic>Sensitivity analysis</topic><topic>Thyristors</topic><topic>Topology</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Lei</creatorcontrib><creatorcontrib>Xia, Boyang</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><creatorcontrib>Cao, Zhaohan</creatorcontrib><creatorcontrib>He, Kun</creatorcontrib><creatorcontrib>Huang, Yongrui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Lei</au><au>Xia, Boyang</au><au>Wang, Xinbing</au><au>Cao, Zhaohan</au><au>He, Kun</au><au>Huang, Yongrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve</atitle><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle><stitle>T-DEI</stitle><date>2024-12</date><risdate>2024</risdate><volume>31</volume><issue>6</issue><spage>2974</spage><epage>2983</epage><pages>2974-2983</pages><issn>1070-9878</issn><eissn>1558-4135</eissn><coden>ITDIES</coden><abstract>Online identification on the health state parameters of thyristor modules in the HVdc converter is important to ensure the safe operation of the equipment. This article constructs a digital twin model of six-pulse converter by analyzing its working principle, the specific topology of thyristor modules in the valve assembly, and the available system information in practical engineering. The Runge-Kutta (RK) method is used to discretize the state equations of the six-pulse converter and to deduce the output data of digital twin model. The simulation results from a MATLAB/SIMULINK model of the six-pulse converter are utilized instead of the data from the actual physical model. According to the data from the simulated physical model and the digital twin model, the optimization objective function for the parameter identification is determined. Then, the equivalent insulation resistance and the damping capacitance parameters of each thyristor module are identified with the particle swarm optimization (PSO) algorithm. The results indicate that the identified equivalent insulation resistance and damping capacitance parameters have a maximum deviation of 7% from the true values. The identification errors of the damping capacitances are less than that of the equivalent insulation resistance, which is consistent with the trajectory sensitivity analysis. The contrast results show that the method in this article has better identification accuracy and noise immunity than those of the previous study. The proposed method provides a convenient solution for the intelligent maintenance of HVdc converter valves, without a large number of external sensors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDEI.2024.3417962</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7295-3922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9878 |
ispartof | IEEE transactions on dielectrics and electrical insulation, 2024-12, Vol.31 (6), p.2974-2983 |
issn | 1070-9878 1558-4135 |
language | eng |
recordid | cdi_proquest_journals_3147528387 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Capacitance Condition monitoring Damping digital twin Digital twins Equations of state Equivalence HVdc thyristor converter valve HVDC transmission Identification methods Insulation Mathematical models Modules Monitoring Noise sensitivity Parameter identification Parameter sensitivity Particle swarm optimization Pulse converters Resistance Runge-Kutta method Sensitivity analysis Thyristors Topology Valves |
title | An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Online%20Identification%20Method%20for%20Health%20State%20Parameters%20of%20Thyristor%20Modules%20in%20HVdc%20Converter%20Valve&rft.jtitle=IEEE%20transactions%20on%20dielectrics%20and%20electrical%20insulation&rft.au=Pang,%20Lei&rft.date=2024-12&rft.volume=31&rft.issue=6&rft.spage=2974&rft.epage=2983&rft.pages=2974-2983&rft.issn=1070-9878&rft.eissn=1558-4135&rft.coden=ITDIES&rft_id=info:doi/10.1109/TDEI.2024.3417962&rft_dat=%3Cproquest_ieee_%3E3147528387%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-d629febaff63f9a3a178c90333bd648350379af0afda268f312dcfbc78091003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3147528387&rft_id=info:pmid/&rft_ieee_id=10568964&rfr_iscdi=true |