Loading…

An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve

Online identification on the health state parameters of thyristor modules in the HVdc converter is important to ensure the safe operation of the equipment. This article constructs a digital twin model of six-pulse converter by analyzing its working principle, the specific topology of thyristor modul...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dielectrics and electrical insulation 2024-12, Vol.31 (6), p.2974-2983
Main Authors: Pang, Lei, Xia, Boyang, Wang, Xinbing, Cao, Zhaohan, He, Kun, Huang, Yongrui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c176t-d629febaff63f9a3a178c90333bd648350379af0afda268f312dcfbc78091003
container_end_page 2983
container_issue 6
container_start_page 2974
container_title IEEE transactions on dielectrics and electrical insulation
container_volume 31
creator Pang, Lei
Xia, Boyang
Wang, Xinbing
Cao, Zhaohan
He, Kun
Huang, Yongrui
description Online identification on the health state parameters of thyristor modules in the HVdc converter is important to ensure the safe operation of the equipment. This article constructs a digital twin model of six-pulse converter by analyzing its working principle, the specific topology of thyristor modules in the valve assembly, and the available system information in practical engineering. The Runge-Kutta (RK) method is used to discretize the state equations of the six-pulse converter and to deduce the output data of digital twin model. The simulation results from a MATLAB/SIMULINK model of the six-pulse converter are utilized instead of the data from the actual physical model. According to the data from the simulated physical model and the digital twin model, the optimization objective function for the parameter identification is determined. Then, the equivalent insulation resistance and the damping capacitance parameters of each thyristor module are identified with the particle swarm optimization (PSO) algorithm. The results indicate that the identified equivalent insulation resistance and damping capacitance parameters have a maximum deviation of 7% from the true values. The identification errors of the damping capacitances are less than that of the equivalent insulation resistance, which is consistent with the trajectory sensitivity analysis. The contrast results show that the method in this article has better identification accuracy and noise immunity than those of the previous study. The proposed method provides a convenient solution for the intelligent maintenance of HVdc converter valves, without a large number of external sensors.
doi_str_mv 10.1109/TDEI.2024.3417962
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3147528387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10568964</ieee_id><sourcerecordid>3147528387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-d629febaff63f9a3a178c90333bd648350379af0afda268f312dcfbc78091003</originalsourceid><addsrcrecordid>eNpNkEtrAjEUhUNpodb2BxS6CHQ9No-ZPJZiHwqKhQ5uhzhzg5FxYpMo-O87oouu7ll851z4EHqmZEQp0W_l-8dsxAjLRzynUgt2gwa0KFSWU17c9plIkmkl1T16iHFLCM0LJgZoM-7wsmtdB3jWQJecdbVJznd4AWnjG2x9wFMwbdrgn2QS4G8TzA4ShIi9xeXmFFxMPbTwzaGFiF2Hp6umxhPfHSH0HF6Z9giP6M6aNsLT9Q5R-flRTqbZfPk1m4znWU2lSFkjmLawNtYKbrXhhkpVa8I5XzciV7wgXGpjibGNYUJZTllT23UtFdGUED5Er5fZffC_B4ip2vpD6PqPFae5LJjiSvYUvVB18DEGsNU-uJ0Jp4qS6uyzOvuszj6rq8--83LpOAD4xxdCaZHzP82Qcd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147528387</pqid></control><display><type>article</type><title>An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve</title><source>IEEE Xplore (Online service)</source><creator>Pang, Lei ; Xia, Boyang ; Wang, Xinbing ; Cao, Zhaohan ; He, Kun ; Huang, Yongrui</creator><creatorcontrib>Pang, Lei ; Xia, Boyang ; Wang, Xinbing ; Cao, Zhaohan ; He, Kun ; Huang, Yongrui</creatorcontrib><description>Online identification on the health state parameters of thyristor modules in the HVdc converter is important to ensure the safe operation of the equipment. This article constructs a digital twin model of six-pulse converter by analyzing its working principle, the specific topology of thyristor modules in the valve assembly, and the available system information in practical engineering. The Runge-Kutta (RK) method is used to discretize the state equations of the six-pulse converter and to deduce the output data of digital twin model. The simulation results from a MATLAB/SIMULINK model of the six-pulse converter are utilized instead of the data from the actual physical model. According to the data from the simulated physical model and the digital twin model, the optimization objective function for the parameter identification is determined. Then, the equivalent insulation resistance and the damping capacitance parameters of each thyristor module are identified with the particle swarm optimization (PSO) algorithm. The results indicate that the identified equivalent insulation resistance and damping capacitance parameters have a maximum deviation of 7% from the true values. The identification errors of the damping capacitances are less than that of the equivalent insulation resistance, which is consistent with the trajectory sensitivity analysis. The contrast results show that the method in this article has better identification accuracy and noise immunity than those of the previous study. The proposed method provides a convenient solution for the intelligent maintenance of HVdc converter valves, without a large number of external sensors.</description><identifier>ISSN: 1070-9878</identifier><identifier>EISSN: 1558-4135</identifier><identifier>DOI: 10.1109/TDEI.2024.3417962</identifier><identifier>CODEN: ITDIES</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Capacitance ; Condition monitoring ; Damping ; digital twin ; Digital twins ; Equations of state ; Equivalence ; HVdc thyristor converter valve ; HVDC transmission ; Identification methods ; Insulation ; Mathematical models ; Modules ; Monitoring ; Noise sensitivity ; Parameter identification ; Parameter sensitivity ; Particle swarm optimization ; Pulse converters ; Resistance ; Runge-Kutta method ; Sensitivity analysis ; Thyristors ; Topology ; Valves</subject><ispartof>IEEE transactions on dielectrics and electrical insulation, 2024-12, Vol.31 (6), p.2974-2983</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-d629febaff63f9a3a178c90333bd648350379af0afda268f312dcfbc78091003</cites><orcidid>0000-0002-7295-3922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10568964$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Pang, Lei</creatorcontrib><creatorcontrib>Xia, Boyang</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><creatorcontrib>Cao, Zhaohan</creatorcontrib><creatorcontrib>He, Kun</creatorcontrib><creatorcontrib>Huang, Yongrui</creatorcontrib><title>An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve</title><title>IEEE transactions on dielectrics and electrical insulation</title><addtitle>T-DEI</addtitle><description>Online identification on the health state parameters of thyristor modules in the HVdc converter is important to ensure the safe operation of the equipment. This article constructs a digital twin model of six-pulse converter by analyzing its working principle, the specific topology of thyristor modules in the valve assembly, and the available system information in practical engineering. The Runge-Kutta (RK) method is used to discretize the state equations of the six-pulse converter and to deduce the output data of digital twin model. The simulation results from a MATLAB/SIMULINK model of the six-pulse converter are utilized instead of the data from the actual physical model. According to the data from the simulated physical model and the digital twin model, the optimization objective function for the parameter identification is determined. Then, the equivalent insulation resistance and the damping capacitance parameters of each thyristor module are identified with the particle swarm optimization (PSO) algorithm. The results indicate that the identified equivalent insulation resistance and damping capacitance parameters have a maximum deviation of 7% from the true values. The identification errors of the damping capacitances are less than that of the equivalent insulation resistance, which is consistent with the trajectory sensitivity analysis. The contrast results show that the method in this article has better identification accuracy and noise immunity than those of the previous study. The proposed method provides a convenient solution for the intelligent maintenance of HVdc converter valves, without a large number of external sensors.</description><subject>Algorithms</subject><subject>Capacitance</subject><subject>Condition monitoring</subject><subject>Damping</subject><subject>digital twin</subject><subject>Digital twins</subject><subject>Equations of state</subject><subject>Equivalence</subject><subject>HVdc thyristor converter valve</subject><subject>HVDC transmission</subject><subject>Identification methods</subject><subject>Insulation</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Monitoring</subject><subject>Noise sensitivity</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Particle swarm optimization</subject><subject>Pulse converters</subject><subject>Resistance</subject><subject>Runge-Kutta method</subject><subject>Sensitivity analysis</subject><subject>Thyristors</subject><subject>Topology</subject><subject>Valves</subject><issn>1070-9878</issn><issn>1558-4135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtrAjEUhUNpodb2BxS6CHQ9No-ZPJZiHwqKhQ5uhzhzg5FxYpMo-O87oouu7ll851z4EHqmZEQp0W_l-8dsxAjLRzynUgt2gwa0KFSWU17c9plIkmkl1T16iHFLCM0LJgZoM-7wsmtdB3jWQJecdbVJznd4AWnjG2x9wFMwbdrgn2QS4G8TzA4ShIi9xeXmFFxMPbTwzaGFiF2Hp6umxhPfHSH0HF6Z9giP6M6aNsLT9Q5R-flRTqbZfPk1m4znWU2lSFkjmLawNtYKbrXhhkpVa8I5XzciV7wgXGpjibGNYUJZTllT23UtFdGUED5Er5fZffC_B4ip2vpD6PqPFae5LJjiSvYUvVB18DEGsNU-uJ0Jp4qS6uyzOvuszj6rq8--83LpOAD4xxdCaZHzP82Qcd0</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Pang, Lei</creator><creator>Xia, Boyang</creator><creator>Wang, Xinbing</creator><creator>Cao, Zhaohan</creator><creator>He, Kun</creator><creator>Huang, Yongrui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7295-3922</orcidid></search><sort><creationdate>202412</creationdate><title>An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve</title><author>Pang, Lei ; Xia, Boyang ; Wang, Xinbing ; Cao, Zhaohan ; He, Kun ; Huang, Yongrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-d629febaff63f9a3a178c90333bd648350379af0afda268f312dcfbc78091003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Capacitance</topic><topic>Condition monitoring</topic><topic>Damping</topic><topic>digital twin</topic><topic>Digital twins</topic><topic>Equations of state</topic><topic>Equivalence</topic><topic>HVdc thyristor converter valve</topic><topic>HVDC transmission</topic><topic>Identification methods</topic><topic>Insulation</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Monitoring</topic><topic>Noise sensitivity</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Particle swarm optimization</topic><topic>Pulse converters</topic><topic>Resistance</topic><topic>Runge-Kutta method</topic><topic>Sensitivity analysis</topic><topic>Thyristors</topic><topic>Topology</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Lei</creatorcontrib><creatorcontrib>Xia, Boyang</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><creatorcontrib>Cao, Zhaohan</creatorcontrib><creatorcontrib>He, Kun</creatorcontrib><creatorcontrib>Huang, Yongrui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Lei</au><au>Xia, Boyang</au><au>Wang, Xinbing</au><au>Cao, Zhaohan</au><au>He, Kun</au><au>Huang, Yongrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve</atitle><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle><stitle>T-DEI</stitle><date>2024-12</date><risdate>2024</risdate><volume>31</volume><issue>6</issue><spage>2974</spage><epage>2983</epage><pages>2974-2983</pages><issn>1070-9878</issn><eissn>1558-4135</eissn><coden>ITDIES</coden><abstract>Online identification on the health state parameters of thyristor modules in the HVdc converter is important to ensure the safe operation of the equipment. This article constructs a digital twin model of six-pulse converter by analyzing its working principle, the specific topology of thyristor modules in the valve assembly, and the available system information in practical engineering. The Runge-Kutta (RK) method is used to discretize the state equations of the six-pulse converter and to deduce the output data of digital twin model. The simulation results from a MATLAB/SIMULINK model of the six-pulse converter are utilized instead of the data from the actual physical model. According to the data from the simulated physical model and the digital twin model, the optimization objective function for the parameter identification is determined. Then, the equivalent insulation resistance and the damping capacitance parameters of each thyristor module are identified with the particle swarm optimization (PSO) algorithm. The results indicate that the identified equivalent insulation resistance and damping capacitance parameters have a maximum deviation of 7% from the true values. The identification errors of the damping capacitances are less than that of the equivalent insulation resistance, which is consistent with the trajectory sensitivity analysis. The contrast results show that the method in this article has better identification accuracy and noise immunity than those of the previous study. The proposed method provides a convenient solution for the intelligent maintenance of HVdc converter valves, without a large number of external sensors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDEI.2024.3417962</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7295-3922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-9878
ispartof IEEE transactions on dielectrics and electrical insulation, 2024-12, Vol.31 (6), p.2974-2983
issn 1070-9878
1558-4135
language eng
recordid cdi_proquest_journals_3147528387
source IEEE Xplore (Online service)
subjects Algorithms
Capacitance
Condition monitoring
Damping
digital twin
Digital twins
Equations of state
Equivalence
HVdc thyristor converter valve
HVDC transmission
Identification methods
Insulation
Mathematical models
Modules
Monitoring
Noise sensitivity
Parameter identification
Parameter sensitivity
Particle swarm optimization
Pulse converters
Resistance
Runge-Kutta method
Sensitivity analysis
Thyristors
Topology
Valves
title An Online Identification Method for Health State Parameters of Thyristor Modules in HVdc Converter Valve
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Online%20Identification%20Method%20for%20Health%20State%20Parameters%20of%20Thyristor%20Modules%20in%20HVdc%20Converter%20Valve&rft.jtitle=IEEE%20transactions%20on%20dielectrics%20and%20electrical%20insulation&rft.au=Pang,%20Lei&rft.date=2024-12&rft.volume=31&rft.issue=6&rft.spage=2974&rft.epage=2983&rft.pages=2974-2983&rft.issn=1070-9878&rft.eissn=1558-4135&rft.coden=ITDIES&rft_id=info:doi/10.1109/TDEI.2024.3417962&rft_dat=%3Cproquest_ieee_%3E3147528387%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-d629febaff63f9a3a178c90333bd648350379af0afda268f312dcfbc78091003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3147528387&rft_id=info:pmid/&rft_ieee_id=10568964&rfr_iscdi=true