Loading…
Quantum Simulation of the Dicke-Ising Model via Digital-Analog Algorithms
The Dicke-Ising model, one of the few paradigmatic models of matter-light interaction, exhibits a superradiant quantum phase transition above a critical coupling strength. However, in natural optical systems, its experimental validation is hindered by a "no-go theorem''. Here, we prop...
Saved in:
Published in: | arXiv.org 2024-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Dicke-Ising model, one of the few paradigmatic models of matter-light interaction, exhibits a superradiant quantum phase transition above a critical coupling strength. However, in natural optical systems, its experimental validation is hindered by a "no-go theorem''. Here, we propose a digital-analog quantum simulator for this model based on an ensemble of interacting qubits coupled to a single-mode photonic resonator. We analyze the system's free energy landscape using field-theoretical methods and develop a digital-analog quantum algorithm that disentangles qubit and photon degrees of freedom through a parity-measurement protocol. This disentangling enables the emulation of a photonic Schr\"odinger cat state, which is a hallmark of the superradiant ground state in finite-size systems and can be unambiguously probed through the Wigner tomography of the resonator's field. |
---|---|
ISSN: | 2331-8422 |