Loading…

Quantum Simulation of the Dicke-Ising Model via Digital-Analog Algorithms

The Dicke-Ising model, one of the few paradigmatic models of matter-light interaction, exhibits a superradiant quantum phase transition above a critical coupling strength. However, in natural optical systems, its experimental validation is hindered by a "no-go theorem''. Here, we prop...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-12
Main Authors: Shapiro, Dmitriy S, Weber, Yannik, Bode, Tim, Wilhelm, Frank K, Bagrets, Dmitry
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shapiro, Dmitriy S
Weber, Yannik
Bode, Tim
Wilhelm, Frank K
Bagrets, Dmitry
description The Dicke-Ising model, one of the few paradigmatic models of matter-light interaction, exhibits a superradiant quantum phase transition above a critical coupling strength. However, in natural optical systems, its experimental validation is hindered by a "no-go theorem''. Here, we propose a digital-analog quantum simulator for this model based on an ensemble of interacting qubits coupled to a single-mode photonic resonator. We analyze the system's free energy landscape using field-theoretical methods and develop a digital-analog quantum algorithm that disentangles qubit and photon degrees of freedom through a parity-measurement protocol. This disentangling enables the emulation of a photonic Schr\"odinger cat state, which is a hallmark of the superradiant ground state in finite-size systems and can be unambiguously probed through the Wigner tomography of the resonator's field.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3147568505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147568505</sourcerecordid><originalsourceid>FETCH-proquest_journals_31475685053</originalsourceid><addsrcrecordid>eNqNi70KwjAYAIMgWLTv8IFzIE2atmvxBzs4iO4laJqmpok2ic9vBx_A6eC4W6CEMpbhKqd0hVLvB0IILUrKOUtQc4nChjjCVY_RiKCdBddB6CXs9f0pceO1VXB2D2ngo8VslQ7C4NoK4xTURrlJh370G7TshPEy_XGNtsfDbXfCr8m9o_ShHVyc5su3LMtLXlSccPZf9QU_8zvb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147568505</pqid></control><display><type>article</type><title>Quantum Simulation of the Dicke-Ising Model via Digital-Analog Algorithms</title><source>Publicly Available Content (ProQuest)</source><creator>Shapiro, Dmitriy S ; Weber, Yannik ; Bode, Tim ; Wilhelm, Frank K ; Bagrets, Dmitry</creator><creatorcontrib>Shapiro, Dmitriy S ; Weber, Yannik ; Bode, Tim ; Wilhelm, Frank K ; Bagrets, Dmitry</creatorcontrib><description>The Dicke-Ising model, one of the few paradigmatic models of matter-light interaction, exhibits a superradiant quantum phase transition above a critical coupling strength. However, in natural optical systems, its experimental validation is hindered by a "no-go theorem''. Here, we propose a digital-analog quantum simulator for this model based on an ensemble of interacting qubits coupled to a single-mode photonic resonator. We analyze the system's free energy landscape using field-theoretical methods and develop a digital-analog quantum algorithm that disentangles qubit and photon degrees of freedom through a parity-measurement protocol. This disentangling enables the emulation of a photonic Schr\"odinger cat state, which is a hallmark of the superradiant ground state in finite-size systems and can be unambiguously probed through the Wigner tomography of the resonator's field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Coupled modes ; Free energy ; Ising model ; Phase transitions ; Photonics ; Qubits (quantum computing) ; Resonators</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3147568505?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Shapiro, Dmitriy S</creatorcontrib><creatorcontrib>Weber, Yannik</creatorcontrib><creatorcontrib>Bode, Tim</creatorcontrib><creatorcontrib>Wilhelm, Frank K</creatorcontrib><creatorcontrib>Bagrets, Dmitry</creatorcontrib><title>Quantum Simulation of the Dicke-Ising Model via Digital-Analog Algorithms</title><title>arXiv.org</title><description>The Dicke-Ising model, one of the few paradigmatic models of matter-light interaction, exhibits a superradiant quantum phase transition above a critical coupling strength. However, in natural optical systems, its experimental validation is hindered by a "no-go theorem''. Here, we propose a digital-analog quantum simulator for this model based on an ensemble of interacting qubits coupled to a single-mode photonic resonator. We analyze the system's free energy landscape using field-theoretical methods and develop a digital-analog quantum algorithm that disentangles qubit and photon degrees of freedom through a parity-measurement protocol. This disentangling enables the emulation of a photonic Schr\"odinger cat state, which is a hallmark of the superradiant ground state in finite-size systems and can be unambiguously probed through the Wigner tomography of the resonator's field.</description><subject>Algorithms</subject><subject>Coupled modes</subject><subject>Free energy</subject><subject>Ising model</subject><subject>Phase transitions</subject><subject>Photonics</subject><subject>Qubits (quantum computing)</subject><subject>Resonators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi70KwjAYAIMgWLTv8IFzIE2atmvxBzs4iO4laJqmpok2ic9vBx_A6eC4W6CEMpbhKqd0hVLvB0IILUrKOUtQc4nChjjCVY_RiKCdBddB6CXs9f0pceO1VXB2D2ngo8VslQ7C4NoK4xTURrlJh370G7TshPEy_XGNtsfDbXfCr8m9o_ShHVyc5su3LMtLXlSccPZf9QU_8zvb</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Shapiro, Dmitriy S</creator><creator>Weber, Yannik</creator><creator>Bode, Tim</creator><creator>Wilhelm, Frank K</creator><creator>Bagrets, Dmitry</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241218</creationdate><title>Quantum Simulation of the Dicke-Ising Model via Digital-Analog Algorithms</title><author>Shapiro, Dmitriy S ; Weber, Yannik ; Bode, Tim ; Wilhelm, Frank K ; Bagrets, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31475685053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Coupled modes</topic><topic>Free energy</topic><topic>Ising model</topic><topic>Phase transitions</topic><topic>Photonics</topic><topic>Qubits (quantum computing)</topic><topic>Resonators</topic><toplevel>online_resources</toplevel><creatorcontrib>Shapiro, Dmitriy S</creatorcontrib><creatorcontrib>Weber, Yannik</creatorcontrib><creatorcontrib>Bode, Tim</creatorcontrib><creatorcontrib>Wilhelm, Frank K</creatorcontrib><creatorcontrib>Bagrets, Dmitry</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapiro, Dmitriy S</au><au>Weber, Yannik</au><au>Bode, Tim</au><au>Wilhelm, Frank K</au><au>Bagrets, Dmitry</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum Simulation of the Dicke-Ising Model via Digital-Analog Algorithms</atitle><jtitle>arXiv.org</jtitle><date>2024-12-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Dicke-Ising model, one of the few paradigmatic models of matter-light interaction, exhibits a superradiant quantum phase transition above a critical coupling strength. However, in natural optical systems, its experimental validation is hindered by a "no-go theorem''. Here, we propose a digital-analog quantum simulator for this model based on an ensemble of interacting qubits coupled to a single-mode photonic resonator. We analyze the system's free energy landscape using field-theoretical methods and develop a digital-analog quantum algorithm that disentangles qubit and photon degrees of freedom through a parity-measurement protocol. This disentangling enables the emulation of a photonic Schr\"odinger cat state, which is a hallmark of the superradiant ground state in finite-size systems and can be unambiguously probed through the Wigner tomography of the resonator's field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3147568505
source Publicly Available Content (ProQuest)
subjects Algorithms
Coupled modes
Free energy
Ising model
Phase transitions
Photonics
Qubits (quantum computing)
Resonators
title Quantum Simulation of the Dicke-Ising Model via Digital-Analog Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20Simulation%20of%20the%20Dicke-Ising%20Model%20via%20Digital-Analog%20Algorithms&rft.jtitle=arXiv.org&rft.au=Shapiro,%20Dmitriy%20S&rft.date=2024-12-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3147568505%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31475685053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3147568505&rft_id=info:pmid/&rfr_iscdi=true