Loading…
Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles
This paper introduces an innovative autonomous survivor detection pipeline tailored for low‐cost micro aerial vehicles (MAVs) operating in post‐disaster indoor environments. This consists of three main components: (1) a novel pipeline for survivor geotagging, which includes autonomous navigation, ma...
Saved in:
Published in: | Computer-aided civil and infrastructure engineering 2025-01, Vol.40 (1), p.130-144 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 144 |
container_issue | 1 |
container_start_page | 130 |
container_title | Computer-aided civil and infrastructure engineering |
container_volume | 40 |
creator | Tavasoli, Sina Poorghasem, Sina Pan, Xiao Yang, T. Y. Bao, Y. |
description | This paper introduces an innovative autonomous survivor detection pipeline tailored for low‐cost micro aerial vehicles (MAVs) operating in post‐disaster indoor environments. This consists of three main components: (1) a novel pipeline for survivor geotagging, which includes autonomous navigation, mapping, and detection of survivors using thermal images; (2) a navigation strategy to ensure complete thermal scanning coverage for survivor detection using low‐cost commercial grade thermal camera; and (3) robust and accurate survivor detection using YOLOv8x and thermal imaging. To demonstrate the effectiveness of the proposed framework, first, the autonomous navigation algorithm is simulated in Robotic Operating System (ROS) and experimentally validated under different layouts. Second, the YOLOv8x algorithm is pretrained and achieves high accuracy. Finally, a real‐world implementation was conducted with partially covered survivors in a simulated post‐disaster environment. The results demonstrated the proposed pipeline can accurately map the layout of the environment and identify all survivors. This study demonstrates that affordable MAVs with basic thermal cameras can be effectively used to geotag survivors to support rescue missions during post‐disaster events. |
doi_str_mv | 10.1111/mice.13319 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3148053482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148053482</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1919-7cbcb5075b9bc73bfdd20d4da373a01b775cbeb7add741dd4b369f3ab9e42df63</originalsourceid><addsrcrecordid>eNotUEtOwzAUtBBIlMKGE1hinWLHThwvq6pApSI2sLb8S3GVxsFOUnXHETgjJ8Ftmc0bjebNexoA7jGa4YTHndN2hgnB_AJMMC1ZVpUlu0wccZLxsmLX4CbGLUqglEzAdj70vvU7P0TY-dj_fv8YF2XsbYCuNd4H2MrRbWTvfAtla2AcwujGpBvbW32Sh-jaDWz8Pm3rFALTG8FDaYOTDRztp9ONjbfgqpZNtHf_cwo-npbvi5ds_fa8WszXWYc55hnTSqsCsUJxpRlRtTE5MtRIwohEWDFWaGUVk8Ywio2hipS8JlJxS3NTl2QKHs65XfBfg4292PohtOmkIJhWqCC0ypMLn11719iD6ILbyXAQGIljkeJYpDgVKV5Xi-WJkT8arG45</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148053482</pqid></control><display><type>article</type><title>Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tavasoli, Sina ; Poorghasem, Sina ; Pan, Xiao ; Yang, T. Y. ; Bao, Y.</creator><creatorcontrib>Tavasoli, Sina ; Poorghasem, Sina ; Pan, Xiao ; Yang, T. Y. ; Bao, Y.</creatorcontrib><description>This paper introduces an innovative autonomous survivor detection pipeline tailored for low‐cost micro aerial vehicles (MAVs) operating in post‐disaster indoor environments. This consists of three main components: (1) a novel pipeline for survivor geotagging, which includes autonomous navigation, mapping, and detection of survivors using thermal images; (2) a navigation strategy to ensure complete thermal scanning coverage for survivor detection using low‐cost commercial grade thermal camera; and (3) robust and accurate survivor detection using YOLOv8x and thermal imaging. To demonstrate the effectiveness of the proposed framework, first, the autonomous navigation algorithm is simulated in Robotic Operating System (ROS) and experimentally validated under different layouts. Second, the YOLOv8x algorithm is pretrained and achieves high accuracy. Finally, a real‐world implementation was conducted with partially covered survivors in a simulated post‐disaster environment. The results demonstrated the proposed pipeline can accurately map the layout of the environment and identify all survivors. This study demonstrates that affordable MAVs with basic thermal cameras can be effectively used to geotag survivors to support rescue missions during post‐disaster events.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.13319</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Autonomous navigation ; Cameras ; Disasters ; Indoor environments ; Indoor navigation ; Layouts ; Micro air vehicles (MAV) ; Survival ; Thermal imaging</subject><ispartof>Computer-aided civil and infrastructure engineering, 2025-01, Vol.40 (1), p.130-144</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of Editor.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tavasoli, Sina</creatorcontrib><creatorcontrib>Poorghasem, Sina</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Yang, T. Y.</creatorcontrib><creatorcontrib>Bao, Y.</creatorcontrib><title>Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles</title><title>Computer-aided civil and infrastructure engineering</title><description>This paper introduces an innovative autonomous survivor detection pipeline tailored for low‐cost micro aerial vehicles (MAVs) operating in post‐disaster indoor environments. This consists of three main components: (1) a novel pipeline for survivor geotagging, which includes autonomous navigation, mapping, and detection of survivors using thermal images; (2) a navigation strategy to ensure complete thermal scanning coverage for survivor detection using low‐cost commercial grade thermal camera; and (3) robust and accurate survivor detection using YOLOv8x and thermal imaging. To demonstrate the effectiveness of the proposed framework, first, the autonomous navigation algorithm is simulated in Robotic Operating System (ROS) and experimentally validated under different layouts. Second, the YOLOv8x algorithm is pretrained and achieves high accuracy. Finally, a real‐world implementation was conducted with partially covered survivors in a simulated post‐disaster environment. The results demonstrated the proposed pipeline can accurately map the layout of the environment and identify all survivors. This study demonstrates that affordable MAVs with basic thermal cameras can be effectively used to geotag survivors to support rescue missions during post‐disaster events.</description><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Cameras</subject><subject>Disasters</subject><subject>Indoor environments</subject><subject>Indoor navigation</subject><subject>Layouts</subject><subject>Micro air vehicles (MAV)</subject><subject>Survival</subject><subject>Thermal imaging</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNotUEtOwzAUtBBIlMKGE1hinWLHThwvq6pApSI2sLb8S3GVxsFOUnXHETgjJ8Ftmc0bjebNexoA7jGa4YTHndN2hgnB_AJMMC1ZVpUlu0wccZLxsmLX4CbGLUqglEzAdj70vvU7P0TY-dj_fv8YF2XsbYCuNd4H2MrRbWTvfAtla2AcwujGpBvbW32Sh-jaDWz8Pm3rFALTG8FDaYOTDRztp9ONjbfgqpZNtHf_cwo-npbvi5ds_fa8WszXWYc55hnTSqsCsUJxpRlRtTE5MtRIwohEWDFWaGUVk8Ywio2hipS8JlJxS3NTl2QKHs65XfBfg4292PohtOmkIJhWqCC0ypMLn11719iD6ILbyXAQGIljkeJYpDgVKV5Xi-WJkT8arG45</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Tavasoli, Sina</creator><creator>Poorghasem, Sina</creator><creator>Pan, Xiao</creator><creator>Yang, T. Y.</creator><creator>Bao, Y.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20250102</creationdate><title>Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles</title><author>Tavasoli, Sina ; Poorghasem, Sina ; Pan, Xiao ; Yang, T. Y. ; Bao, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1919-7cbcb5075b9bc73bfdd20d4da373a01b775cbeb7add741dd4b369f3ab9e42df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Cameras</topic><topic>Disasters</topic><topic>Indoor environments</topic><topic>Indoor navigation</topic><topic>Layouts</topic><topic>Micro air vehicles (MAV)</topic><topic>Survival</topic><topic>Thermal imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavasoli, Sina</creatorcontrib><creatorcontrib>Poorghasem, Sina</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Yang, T. Y.</creatorcontrib><creatorcontrib>Bao, Y.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Open Access</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavasoli, Sina</au><au>Poorghasem, Sina</au><au>Pan, Xiao</au><au>Yang, T. Y.</au><au>Bao, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2025-01-02</date><risdate>2025</risdate><volume>40</volume><issue>1</issue><spage>130</spage><epage>144</epage><pages>130-144</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This paper introduces an innovative autonomous survivor detection pipeline tailored for low‐cost micro aerial vehicles (MAVs) operating in post‐disaster indoor environments. This consists of three main components: (1) a novel pipeline for survivor geotagging, which includes autonomous navigation, mapping, and detection of survivors using thermal images; (2) a navigation strategy to ensure complete thermal scanning coverage for survivor detection using low‐cost commercial grade thermal camera; and (3) robust and accurate survivor detection using YOLOv8x and thermal imaging. To demonstrate the effectiveness of the proposed framework, first, the autonomous navigation algorithm is simulated in Robotic Operating System (ROS) and experimentally validated under different layouts. Second, the YOLOv8x algorithm is pretrained and achieves high accuracy. Finally, a real‐world implementation was conducted with partially covered survivors in a simulated post‐disaster environment. The results demonstrated the proposed pipeline can accurately map the layout of the environment and identify all survivors. This study demonstrates that affordable MAVs with basic thermal cameras can be effectively used to geotag survivors to support rescue missions during post‐disaster events.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.13319</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-9687 |
ispartof | Computer-aided civil and infrastructure engineering, 2025-01, Vol.40 (1), p.130-144 |
issn | 1093-9687 1467-8667 |
language | eng |
recordid | cdi_proquest_journals_3148053482 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Autonomous navigation Cameras Disasters Indoor environments Indoor navigation Layouts Micro air vehicles (MAV) Survival Thermal imaging |
title | Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20post%E2%80%90disaster%20indoor%20navigation%20and%20survivor%20detection%20using%20low%E2%80%90cost%20micro%20aerial%20vehicles&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Tavasoli,%20Sina&rft.date=2025-01-02&rft.volume=40&rft.issue=1&rft.spage=130&rft.epage=144&rft.pages=130-144&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.13319&rft_dat=%3Cproquest_wiley%3E3148053482%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1919-7cbcb5075b9bc73bfdd20d4da373a01b775cbeb7add741dd4b369f3ab9e42df63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148053482&rft_id=info:pmid/&rfr_iscdi=true |