Loading…

Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles

This paper introduces an innovative autonomous survivor detection pipeline tailored for low‐cost micro aerial vehicles (MAVs) operating in post‐disaster indoor environments. This consists of three main components: (1) a novel pipeline for survivor geotagging, which includes autonomous navigation, ma...

Full description

Saved in:
Bibliographic Details
Published in:Computer-aided civil and infrastructure engineering 2025-01, Vol.40 (1), p.130-144
Main Authors: Tavasoli, Sina, Poorghasem, Sina, Pan, Xiao, Yang, T. Y., Bao, Y.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 144
container_issue 1
container_start_page 130
container_title Computer-aided civil and infrastructure engineering
container_volume 40
creator Tavasoli, Sina
Poorghasem, Sina
Pan, Xiao
Yang, T. Y.
Bao, Y.
description This paper introduces an innovative autonomous survivor detection pipeline tailored for low‐cost micro aerial vehicles (MAVs) operating in post‐disaster indoor environments. This consists of three main components: (1) a novel pipeline for survivor geotagging, which includes autonomous navigation, mapping, and detection of survivors using thermal images; (2) a navigation strategy to ensure complete thermal scanning coverage for survivor detection using low‐cost commercial grade thermal camera; and (3) robust and accurate survivor detection using YOLOv8x and thermal imaging. To demonstrate the effectiveness of the proposed framework, first, the autonomous navigation algorithm is simulated in Robotic Operating System (ROS) and experimentally validated under different layouts. Second, the YOLOv8x algorithm is pretrained and achieves high accuracy. Finally, a real‐world implementation was conducted with partially covered survivors in a simulated post‐disaster environment. The results demonstrated the proposed pipeline can accurately map the layout of the environment and identify all survivors. This study demonstrates that affordable MAVs with basic thermal cameras can be effectively used to geotag survivors to support rescue missions during post‐disaster events.
doi_str_mv 10.1111/mice.13319
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3148053482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148053482</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1919-7cbcb5075b9bc73bfdd20d4da373a01b775cbeb7add741dd4b369f3ab9e42df63</originalsourceid><addsrcrecordid>eNotUEtOwzAUtBBIlMKGE1hinWLHThwvq6pApSI2sLb8S3GVxsFOUnXHETgjJ8Ftmc0bjebNexoA7jGa4YTHndN2hgnB_AJMMC1ZVpUlu0wccZLxsmLX4CbGLUqglEzAdj70vvU7P0TY-dj_fv8YF2XsbYCuNd4H2MrRbWTvfAtla2AcwujGpBvbW32Sh-jaDWz8Pm3rFALTG8FDaYOTDRztp9ONjbfgqpZNtHf_cwo-npbvi5ds_fa8WszXWYc55hnTSqsCsUJxpRlRtTE5MtRIwohEWDFWaGUVk8Ywio2hipS8JlJxS3NTl2QKHs65XfBfg4292PohtOmkIJhWqCC0ypMLn11719iD6ILbyXAQGIljkeJYpDgVKV5Xi-WJkT8arG45</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148053482</pqid></control><display><type>article</type><title>Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tavasoli, Sina ; Poorghasem, Sina ; Pan, Xiao ; Yang, T. Y. ; Bao, Y.</creator><creatorcontrib>Tavasoli, Sina ; Poorghasem, Sina ; Pan, Xiao ; Yang, T. Y. ; Bao, Y.</creatorcontrib><description>This paper introduces an innovative autonomous survivor detection pipeline tailored for low‐cost micro aerial vehicles (MAVs) operating in post‐disaster indoor environments. This consists of three main components: (1) a novel pipeline for survivor geotagging, which includes autonomous navigation, mapping, and detection of survivors using thermal images; (2) a navigation strategy to ensure complete thermal scanning coverage for survivor detection using low‐cost commercial grade thermal camera; and (3) robust and accurate survivor detection using YOLOv8x and thermal imaging. To demonstrate the effectiveness of the proposed framework, first, the autonomous navigation algorithm is simulated in Robotic Operating System (ROS) and experimentally validated under different layouts. Second, the YOLOv8x algorithm is pretrained and achieves high accuracy. Finally, a real‐world implementation was conducted with partially covered survivors in a simulated post‐disaster environment. The results demonstrated the proposed pipeline can accurately map the layout of the environment and identify all survivors. This study demonstrates that affordable MAVs with basic thermal cameras can be effectively used to geotag survivors to support rescue missions during post‐disaster events.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.13319</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Autonomous navigation ; Cameras ; Disasters ; Indoor environments ; Indoor navigation ; Layouts ; Micro air vehicles (MAV) ; Survival ; Thermal imaging</subject><ispartof>Computer-aided civil and infrastructure engineering, 2025-01, Vol.40 (1), p.130-144</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of Editor.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tavasoli, Sina</creatorcontrib><creatorcontrib>Poorghasem, Sina</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Yang, T. Y.</creatorcontrib><creatorcontrib>Bao, Y.</creatorcontrib><title>Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles</title><title>Computer-aided civil and infrastructure engineering</title><description>This paper introduces an innovative autonomous survivor detection pipeline tailored for low‐cost micro aerial vehicles (MAVs) operating in post‐disaster indoor environments. This consists of three main components: (1) a novel pipeline for survivor geotagging, which includes autonomous navigation, mapping, and detection of survivors using thermal images; (2) a navigation strategy to ensure complete thermal scanning coverage for survivor detection using low‐cost commercial grade thermal camera; and (3) robust and accurate survivor detection using YOLOv8x and thermal imaging. To demonstrate the effectiveness of the proposed framework, first, the autonomous navigation algorithm is simulated in Robotic Operating System (ROS) and experimentally validated under different layouts. Second, the YOLOv8x algorithm is pretrained and achieves high accuracy. Finally, a real‐world implementation was conducted with partially covered survivors in a simulated post‐disaster environment. The results demonstrated the proposed pipeline can accurately map the layout of the environment and identify all survivors. This study demonstrates that affordable MAVs with basic thermal cameras can be effectively used to geotag survivors to support rescue missions during post‐disaster events.</description><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Cameras</subject><subject>Disasters</subject><subject>Indoor environments</subject><subject>Indoor navigation</subject><subject>Layouts</subject><subject>Micro air vehicles (MAV)</subject><subject>Survival</subject><subject>Thermal imaging</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNotUEtOwzAUtBBIlMKGE1hinWLHThwvq6pApSI2sLb8S3GVxsFOUnXHETgjJ8Ftmc0bjebNexoA7jGa4YTHndN2hgnB_AJMMC1ZVpUlu0wccZLxsmLX4CbGLUqglEzAdj70vvU7P0TY-dj_fv8YF2XsbYCuNd4H2MrRbWTvfAtla2AcwujGpBvbW32Sh-jaDWz8Pm3rFALTG8FDaYOTDRztp9ONjbfgqpZNtHf_cwo-npbvi5ds_fa8WszXWYc55hnTSqsCsUJxpRlRtTE5MtRIwohEWDFWaGUVk8Ywio2hipS8JlJxS3NTl2QKHs65XfBfg4292PohtOmkIJhWqCC0ypMLn11719iD6ILbyXAQGIljkeJYpDgVKV5Xi-WJkT8arG45</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Tavasoli, Sina</creator><creator>Poorghasem, Sina</creator><creator>Pan, Xiao</creator><creator>Yang, T. Y.</creator><creator>Bao, Y.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20250102</creationdate><title>Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles</title><author>Tavasoli, Sina ; Poorghasem, Sina ; Pan, Xiao ; Yang, T. Y. ; Bao, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1919-7cbcb5075b9bc73bfdd20d4da373a01b775cbeb7add741dd4b369f3ab9e42df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Cameras</topic><topic>Disasters</topic><topic>Indoor environments</topic><topic>Indoor navigation</topic><topic>Layouts</topic><topic>Micro air vehicles (MAV)</topic><topic>Survival</topic><topic>Thermal imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavasoli, Sina</creatorcontrib><creatorcontrib>Poorghasem, Sina</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Yang, T. Y.</creatorcontrib><creatorcontrib>Bao, Y.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Open Access</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavasoli, Sina</au><au>Poorghasem, Sina</au><au>Pan, Xiao</au><au>Yang, T. Y.</au><au>Bao, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2025-01-02</date><risdate>2025</risdate><volume>40</volume><issue>1</issue><spage>130</spage><epage>144</epage><pages>130-144</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This paper introduces an innovative autonomous survivor detection pipeline tailored for low‐cost micro aerial vehicles (MAVs) operating in post‐disaster indoor environments. This consists of three main components: (1) a novel pipeline for survivor geotagging, which includes autonomous navigation, mapping, and detection of survivors using thermal images; (2) a navigation strategy to ensure complete thermal scanning coverage for survivor detection using low‐cost commercial grade thermal camera; and (3) robust and accurate survivor detection using YOLOv8x and thermal imaging. To demonstrate the effectiveness of the proposed framework, first, the autonomous navigation algorithm is simulated in Robotic Operating System (ROS) and experimentally validated under different layouts. Second, the YOLOv8x algorithm is pretrained and achieves high accuracy. Finally, a real‐world implementation was conducted with partially covered survivors in a simulated post‐disaster environment. The results demonstrated the proposed pipeline can accurately map the layout of the environment and identify all survivors. This study demonstrates that affordable MAVs with basic thermal cameras can be effectively used to geotag survivors to support rescue missions during post‐disaster events.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.13319</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1093-9687
ispartof Computer-aided civil and infrastructure engineering, 2025-01, Vol.40 (1), p.130-144
issn 1093-9687
1467-8667
language eng
recordid cdi_proquest_journals_3148053482
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Autonomous navigation
Cameras
Disasters
Indoor environments
Indoor navigation
Layouts
Micro air vehicles (MAV)
Survival
Thermal imaging
title Autonomous post‐disaster indoor navigation and survivor detection using low‐cost micro aerial vehicles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20post%E2%80%90disaster%20indoor%20navigation%20and%20survivor%20detection%20using%20low%E2%80%90cost%20micro%20aerial%20vehicles&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Tavasoli,%20Sina&rft.date=2025-01-02&rft.volume=40&rft.issue=1&rft.spage=130&rft.epage=144&rft.pages=130-144&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.13319&rft_dat=%3Cproquest_wiley%3E3148053482%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1919-7cbcb5075b9bc73bfdd20d4da373a01b775cbeb7add741dd4b369f3ab9e42df63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148053482&rft_id=info:pmid/&rfr_iscdi=true