Loading…

Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives

We correlate the annual Wolf numbers W and their time derivatives Wʹ by shifting time fragments of W and Wʹ relative to each other. The most significant (up to 0.874) correlation is with 3 years shifts for fragments covering 14 years. For longer and shorter periods, the correlation coefficients 0.77...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the International Astronomical Union 2023-12, Vol.19 (S365), p.158-162
Main Authors: Starchenko, S. V., Yakovleva, S. V.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 162
container_issue S365
container_start_page 158
container_title Proceedings of the International Astronomical Union
container_volume 19
creator Starchenko, S. V.
Yakovleva, S. V.
description We correlate the annual Wolf numbers W and their time derivatives Wʹ by shifting time fragments of W and Wʹ relative to each other. The most significant (up to 0.874) correlation is with 3 years shifts for fragments covering 14 years. For longer and shorter periods, the correlation coefficients 0.771–0.855 with 2–3 years shift. The most significant 9 years shift corresponds to -0.852/-0.824 anti-correlation coefficient for 14/11 years period. The other periods are less significant. To evaluate predictive estimates, we use the times series fragments of W shifted back into the past. A forecast can be made using the leading graphs based upon the derived calibration factor. Test calculations show that the most effective is the calibration factor calculated for changing the phase of the cycle. The best linear pairwise correlation coefficient of the approximation is 0.94.
doi_str_mv 10.1017/S1743921323005306
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148371023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1743921323005306</cupid><sourcerecordid>3148371023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1143-f5ed1dadcb7ebe0675641716c69cb9e7515ff241834cc6fa0fae4d13c96e7b293</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAczWz2U26Ryn-g4KCisclm0zalO5mTbKVfnu3tOhBPM0wvN-bxyPkEtg1MJA3ryBzXmbAM85YwZk4IqPdaVJmGRz_7MBPyVmMK8ZyMeXFiKiX4Betj8lp6rvOh9S3Lm2ptzQtkcalswkN1T4EXKvkfEtrTF-ILf3wa0vbvqkxRKpaswNcoMk1SA0GtxnkG4zn5MSqdcSLwxyT9_u7t9njZP788DS7nU80wJDNFmjAKKNriTUyIQuRgwShRanrEmUBhbVZDlOeay2sYlZhboDrUqCss5KPydXetwv-s8eYqpXvQzu8rDjkUy6BZXxQwV6lg48xoK264BoVthWwatdk9afJgeEHRjV1cGaBv9b_U9_J-3cC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148371023</pqid></control><display><type>article</type><title>Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives</title><source>Cambridge University Press</source><creator>Starchenko, S. V. ; Yakovleva, S. V.</creator><creatorcontrib>Starchenko, S. V. ; Yakovleva, S. V.</creatorcontrib><description>We correlate the annual Wolf numbers W and their time derivatives Wʹ by shifting time fragments of W and Wʹ relative to each other. The most significant (up to 0.874) correlation is with 3 years shifts for fragments covering 14 years. For longer and shorter periods, the correlation coefficients 0.771–0.855 with 2–3 years shift. The most significant 9 years shift corresponds to -0.852/-0.824 anti-correlation coefficient for 14/11 years period. The other periods are less significant. To evaluate predictive estimates, we use the times series fragments of W shifted back into the past. A forecast can be made using the leading graphs based upon the derived calibration factor. Test calculations show that the most effective is the calibration factor calculated for changing the phase of the cycle. The best linear pairwise correlation coefficient of the approximation is 0.94.</description><identifier>ISSN: 1743-9213</identifier><identifier>EISSN: 1743-9221</identifier><identifier>DOI: 10.1017/S1743921323005306</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Calibration ; Contributed Paper ; Correlation coefficients ; Fragments</subject><ispartof>Proceedings of the International Astronomical Union, 2023-12, Vol.19 (S365), p.158-162</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-8989-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1743921323005306/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>Starchenko, S. V.</creatorcontrib><creatorcontrib>Yakovleva, S. V.</creatorcontrib><title>Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives</title><title>Proceedings of the International Astronomical Union</title><addtitle>Proc. IAU</addtitle><description>We correlate the annual Wolf numbers W and their time derivatives Wʹ by shifting time fragments of W and Wʹ relative to each other. The most significant (up to 0.874) correlation is with 3 years shifts for fragments covering 14 years. For longer and shorter periods, the correlation coefficients 0.771–0.855 with 2–3 years shift. The most significant 9 years shift corresponds to -0.852/-0.824 anti-correlation coefficient for 14/11 years period. The other periods are less significant. To evaluate predictive estimates, we use the times series fragments of W shifted back into the past. A forecast can be made using the leading graphs based upon the derived calibration factor. Test calculations show that the most effective is the calibration factor calculated for changing the phase of the cycle. The best linear pairwise correlation coefficient of the approximation is 0.94.</description><subject>Calibration</subject><subject>Contributed Paper</subject><subject>Correlation coefficients</subject><subject>Fragments</subject><issn>1743-9213</issn><issn>1743-9221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAczWz2U26Ryn-g4KCisclm0zalO5mTbKVfnu3tOhBPM0wvN-bxyPkEtg1MJA3ryBzXmbAM85YwZk4IqPdaVJmGRz_7MBPyVmMK8ZyMeXFiKiX4Betj8lp6rvOh9S3Lm2ptzQtkcalswkN1T4EXKvkfEtrTF-ILf3wa0vbvqkxRKpaswNcoMk1SA0GtxnkG4zn5MSqdcSLwxyT9_u7t9njZP788DS7nU80wJDNFmjAKKNriTUyIQuRgwShRanrEmUBhbVZDlOeay2sYlZhboDrUqCss5KPydXetwv-s8eYqpXvQzu8rDjkUy6BZXxQwV6lg48xoK264BoVthWwatdk9afJgeEHRjV1cGaBv9b_U9_J-3cC</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Starchenko, S. V.</creator><creator>Yakovleva, S. V.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0000-8989-1978</orcidid></search><sort><creationdate>202312</creationdate><title>Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives</title><author>Starchenko, S. V. ; Yakovleva, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1143-f5ed1dadcb7ebe0675641716c69cb9e7515ff241834cc6fa0fae4d13c96e7b293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calibration</topic><topic>Contributed Paper</topic><topic>Correlation coefficients</topic><topic>Fragments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starchenko, S. V.</creatorcontrib><creatorcontrib>Yakovleva, S. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the International Astronomical Union</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starchenko, S. V.</au><au>Yakovleva, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives</atitle><jtitle>Proceedings of the International Astronomical Union</jtitle><addtitle>Proc. IAU</addtitle><date>2023-12</date><risdate>2023</risdate><volume>19</volume><issue>S365</issue><spage>158</spage><epage>162</epage><pages>158-162</pages><issn>1743-9213</issn><eissn>1743-9221</eissn><abstract>We correlate the annual Wolf numbers W and their time derivatives Wʹ by shifting time fragments of W and Wʹ relative to each other. The most significant (up to 0.874) correlation is with 3 years shifts for fragments covering 14 years. For longer and shorter periods, the correlation coefficients 0.771–0.855 with 2–3 years shift. The most significant 9 years shift corresponds to -0.852/-0.824 anti-correlation coefficient for 14/11 years period. The other periods are less significant. To evaluate predictive estimates, we use the times series fragments of W shifted back into the past. A forecast can be made using the leading graphs based upon the derived calibration factor. Test calculations show that the most effective is the calibration factor calculated for changing the phase of the cycle. The best linear pairwise correlation coefficient of the approximation is 0.94.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1743921323005306</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0000-8989-1978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1743-9213
ispartof Proceedings of the International Astronomical Union, 2023-12, Vol.19 (S365), p.158-162
issn 1743-9213
1743-9221
language eng
recordid cdi_proquest_journals_3148371023
source Cambridge University Press
subjects Calibration
Contributed Paper
Correlation coefficients
Fragments
title Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognostic%20opportunity%20of%20the%20shifted%20correlation%20between%20Wolf%20numbers%20and%20their%20time%20derivatives&rft.jtitle=Proceedings%20of%20the%20International%20Astronomical%20Union&rft.au=Starchenko,%20S.%20V.&rft.date=2023-12&rft.volume=19&rft.issue=S365&rft.spage=158&rft.epage=162&rft.pages=158-162&rft.issn=1743-9213&rft.eissn=1743-9221&rft_id=info:doi/10.1017/S1743921323005306&rft_dat=%3Cproquest_cross%3E3148371023%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1143-f5ed1dadcb7ebe0675641716c69cb9e7515ff241834cc6fa0fae4d13c96e7b293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148371023&rft_id=info:pmid/&rft_cupid=10_1017_S1743921323005306&rfr_iscdi=true