Loading…
Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives
We correlate the annual Wolf numbers W and their time derivatives Wʹ by shifting time fragments of W and Wʹ relative to each other. The most significant (up to 0.874) correlation is with 3 years shifts for fragments covering 14 years. For longer and shorter periods, the correlation coefficients 0.77...
Saved in:
Published in: | Proceedings of the International Astronomical Union 2023-12, Vol.19 (S365), p.158-162 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 162 |
container_issue | S365 |
container_start_page | 158 |
container_title | Proceedings of the International Astronomical Union |
container_volume | 19 |
creator | Starchenko, S. V. Yakovleva, S. V. |
description | We correlate the annual Wolf numbers W and their time derivatives Wʹ by shifting time fragments of W and Wʹ relative to each other. The most significant (up to 0.874) correlation is with 3 years shifts for fragments covering 14 years. For longer and shorter periods, the correlation coefficients 0.771–0.855 with 2–3 years shift. The most significant 9 years shift corresponds to -0.852/-0.824 anti-correlation coefficient for 14/11 years period. The other periods are less significant. To evaluate predictive estimates, we use the times series fragments of W shifted back into the past. A forecast can be made using the leading graphs based upon the derived calibration factor. Test calculations show that the most effective is the calibration factor calculated for changing the phase of the cycle. The best linear pairwise correlation coefficient of the approximation is 0.94. |
doi_str_mv | 10.1017/S1743921323005306 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148371023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1743921323005306</cupid><sourcerecordid>3148371023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1143-f5ed1dadcb7ebe0675641716c69cb9e7515ff241834cc6fa0fae4d13c96e7b293</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAczWz2U26Ryn-g4KCisclm0zalO5mTbKVfnu3tOhBPM0wvN-bxyPkEtg1MJA3ryBzXmbAM85YwZk4IqPdaVJmGRz_7MBPyVmMK8ZyMeXFiKiX4Betj8lp6rvOh9S3Lm2ptzQtkcalswkN1T4EXKvkfEtrTF-ILf3wa0vbvqkxRKpaswNcoMk1SA0GtxnkG4zn5MSqdcSLwxyT9_u7t9njZP788DS7nU80wJDNFmjAKKNriTUyIQuRgwShRanrEmUBhbVZDlOeay2sYlZhboDrUqCss5KPydXetwv-s8eYqpXvQzu8rDjkUy6BZXxQwV6lg48xoK264BoVthWwatdk9afJgeEHRjV1cGaBv9b_U9_J-3cC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148371023</pqid></control><display><type>article</type><title>Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives</title><source>Cambridge University Press</source><creator>Starchenko, S. V. ; Yakovleva, S. V.</creator><creatorcontrib>Starchenko, S. V. ; Yakovleva, S. V.</creatorcontrib><description>We correlate the annual Wolf numbers W and their time derivatives Wʹ by shifting time fragments of W and Wʹ relative to each other. The most significant (up to 0.874) correlation is with 3 years shifts for fragments covering 14 years. For longer and shorter periods, the correlation coefficients 0.771–0.855 with 2–3 years shift. The most significant 9 years shift corresponds to -0.852/-0.824 anti-correlation coefficient for 14/11 years period. The other periods are less significant. To evaluate predictive estimates, we use the times series fragments of W shifted back into the past. A forecast can be made using the leading graphs based upon the derived calibration factor. Test calculations show that the most effective is the calibration factor calculated for changing the phase of the cycle. The best linear pairwise correlation coefficient of the approximation is 0.94.</description><identifier>ISSN: 1743-9213</identifier><identifier>EISSN: 1743-9221</identifier><identifier>DOI: 10.1017/S1743921323005306</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Calibration ; Contributed Paper ; Correlation coefficients ; Fragments</subject><ispartof>Proceedings of the International Astronomical Union, 2023-12, Vol.19 (S365), p.158-162</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-8989-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1743921323005306/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>Starchenko, S. V.</creatorcontrib><creatorcontrib>Yakovleva, S. V.</creatorcontrib><title>Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives</title><title>Proceedings of the International Astronomical Union</title><addtitle>Proc. IAU</addtitle><description>We correlate the annual Wolf numbers W and their time derivatives Wʹ by shifting time fragments of W and Wʹ relative to each other. The most significant (up to 0.874) correlation is with 3 years shifts for fragments covering 14 years. For longer and shorter periods, the correlation coefficients 0.771–0.855 with 2–3 years shift. The most significant 9 years shift corresponds to -0.852/-0.824 anti-correlation coefficient for 14/11 years period. The other periods are less significant. To evaluate predictive estimates, we use the times series fragments of W shifted back into the past. A forecast can be made using the leading graphs based upon the derived calibration factor. Test calculations show that the most effective is the calibration factor calculated for changing the phase of the cycle. The best linear pairwise correlation coefficient of the approximation is 0.94.</description><subject>Calibration</subject><subject>Contributed Paper</subject><subject>Correlation coefficients</subject><subject>Fragments</subject><issn>1743-9213</issn><issn>1743-9221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAczWz2U26Ryn-g4KCisclm0zalO5mTbKVfnu3tOhBPM0wvN-bxyPkEtg1MJA3ryBzXmbAM85YwZk4IqPdaVJmGRz_7MBPyVmMK8ZyMeXFiKiX4Betj8lp6rvOh9S3Lm2ptzQtkcalswkN1T4EXKvkfEtrTF-ILf3wa0vbvqkxRKpaswNcoMk1SA0GtxnkG4zn5MSqdcSLwxyT9_u7t9njZP788DS7nU80wJDNFmjAKKNriTUyIQuRgwShRanrEmUBhbVZDlOeay2sYlZhboDrUqCss5KPydXetwv-s8eYqpXvQzu8rDjkUy6BZXxQwV6lg48xoK264BoVthWwatdk9afJgeEHRjV1cGaBv9b_U9_J-3cC</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Starchenko, S. V.</creator><creator>Yakovleva, S. V.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0000-8989-1978</orcidid></search><sort><creationdate>202312</creationdate><title>Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives</title><author>Starchenko, S. V. ; Yakovleva, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1143-f5ed1dadcb7ebe0675641716c69cb9e7515ff241834cc6fa0fae4d13c96e7b293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calibration</topic><topic>Contributed Paper</topic><topic>Correlation coefficients</topic><topic>Fragments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starchenko, S. V.</creatorcontrib><creatorcontrib>Yakovleva, S. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the International Astronomical Union</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starchenko, S. V.</au><au>Yakovleva, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives</atitle><jtitle>Proceedings of the International Astronomical Union</jtitle><addtitle>Proc. IAU</addtitle><date>2023-12</date><risdate>2023</risdate><volume>19</volume><issue>S365</issue><spage>158</spage><epage>162</epage><pages>158-162</pages><issn>1743-9213</issn><eissn>1743-9221</eissn><abstract>We correlate the annual Wolf numbers W and their time derivatives Wʹ by shifting time fragments of W and Wʹ relative to each other. The most significant (up to 0.874) correlation is with 3 years shifts for fragments covering 14 years. For longer and shorter periods, the correlation coefficients 0.771–0.855 with 2–3 years shift. The most significant 9 years shift corresponds to -0.852/-0.824 anti-correlation coefficient for 14/11 years period. The other periods are less significant. To evaluate predictive estimates, we use the times series fragments of W shifted back into the past. A forecast can be made using the leading graphs based upon the derived calibration factor. Test calculations show that the most effective is the calibration factor calculated for changing the phase of the cycle. The best linear pairwise correlation coefficient of the approximation is 0.94.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1743921323005306</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0000-8989-1978</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1743-9213 |
ispartof | Proceedings of the International Astronomical Union, 2023-12, Vol.19 (S365), p.158-162 |
issn | 1743-9213 1743-9221 |
language | eng |
recordid | cdi_proquest_journals_3148371023 |
source | Cambridge University Press |
subjects | Calibration Contributed Paper Correlation coefficients Fragments |
title | Prognostic opportunity of the shifted correlation between Wolf numbers and their time derivatives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognostic%20opportunity%20of%20the%20shifted%20correlation%20between%20Wolf%20numbers%20and%20their%20time%20derivatives&rft.jtitle=Proceedings%20of%20the%20International%20Astronomical%20Union&rft.au=Starchenko,%20S.%20V.&rft.date=2023-12&rft.volume=19&rft.issue=S365&rft.spage=158&rft.epage=162&rft.pages=158-162&rft.issn=1743-9213&rft.eissn=1743-9221&rft_id=info:doi/10.1017/S1743921323005306&rft_dat=%3Cproquest_cross%3E3148371023%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1143-f5ed1dadcb7ebe0675641716c69cb9e7515ff241834cc6fa0fae4d13c96e7b293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148371023&rft_id=info:pmid/&rft_cupid=10_1017_S1743921323005306&rfr_iscdi=true |