Loading…

Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon

The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Holzäpfel, Adrian, Rinner, Stephan, Kilian Sandholzer, Gritsch, Andreas, Chanelière, Thierry, Reiserer, Andreas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Holzäpfel, Adrian
Rinner, Stephan
Kilian Sandholzer
Gritsch, Andreas
Chanelière, Thierry
Reiserer, Andreas
description The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission in the minimal-loss band of optical fibers. Recent studies have reported two distinct sites in the silicon lattice in which erbium can be reproducibly integrated with particularly promising properties. Here, for an in-depth analysis of these sites, resonant fluorescence spectroscopy is performed on a nanophotonic waveguide in magnetic fields applied along different orientations. In this way, the site symmetry is determined, the spin Hamiltonian is reconstructed and a partial fit of the crystal field Hamiltonian is performed. The obtained quantitative description of the magnetic interaction allows the optimization of Zeeman splittings, optical branching ratios or microwave driving to the needs of future experiments. Beyond that, the derived site symmetry constrains the location of the erbium dopant in the silicon unit cell. This is a key step towards a detailed microscopic understanding of the erbium sites, which may help to improve the integration yield, thus paving the way to efficient nanophotonic quantum memories based on the Er:Si platform.
doi_str_mv 10.48550/arxiv.2409.06571
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3148680081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148680081</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-43c932f953e1c6c74d5db652d624b8d2f4cc9340111ba23ca6f4163a640dfee43</originalsourceid><addsrcrecordid>eNotjctKw0AYRgdBsNQ-gLsB14lzT7KUoFYouCm4LH_mQqekM3FmIurTG7Srsznn-xC6o6QWrZTkAdKX_6yZIF1NlGzoFVoxzmnVCsZu0CbnEyGEqYZJyVfovT9CAl1s8j9QfAw4OlyOFufJBwzBYJ2-c4ERO29Hg7dw9mOJwcOfadPg5zM2cYJQMl6S7EevY7hF1w7GbDcXrtH--Wnfb6vd28tr_7irQDJaCa47zlwnuaVa6UYYaQYlmVFMDK1hTuhFEIRSOgDjGpQTVHFQghhnreBrdP8_O6X4MdtcDqc4p7A8HjgVrWoJaSn_BcooUz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148680081</pqid></control><display><type>article</type><title>Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon</title><source>Publicly Available Content Database</source><creator>Holzäpfel, Adrian ; Rinner, Stephan ; Kilian Sandholzer ; Gritsch, Andreas ; Chanelière, Thierry ; Reiserer, Andreas</creator><creatorcontrib>Holzäpfel, Adrian ; Rinner, Stephan ; Kilian Sandholzer ; Gritsch, Andreas ; Chanelière, Thierry ; Reiserer, Andreas</creatorcontrib><description>The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission in the minimal-loss band of optical fibers. Recent studies have reported two distinct sites in the silicon lattice in which erbium can be reproducibly integrated with particularly promising properties. Here, for an in-depth analysis of these sites, resonant fluorescence spectroscopy is performed on a nanophotonic waveguide in magnetic fields applied along different orientations. In this way, the site symmetry is determined, the spin Hamiltonian is reconstructed and a partial fit of the crystal field Hamiltonian is performed. The obtained quantitative description of the magnetic interaction allows the optimization of Zeeman splittings, optical branching ratios or microwave driving to the needs of future experiments. Beyond that, the derived site symmetry constrains the location of the erbium dopant in the silicon unit cell. This is a key step towards a detailed microscopic understanding of the erbium sites, which may help to improve the integration yield, thus paving the way to efficient nanophotonic quantum memories based on the Er:Si platform.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2409.06571</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crystal lattices ; Dopants ; Emitters ; Erbium ; Hamiltonian functions ; Magnetic properties ; Nanofabrication ; Optical fibers ; Optical properties ; Photonic crystals ; Silicon ; Silicon devices ; Symmetry ; Unit cell ; Waveguides</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3148680081?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Holzäpfel, Adrian</creatorcontrib><creatorcontrib>Rinner, Stephan</creatorcontrib><creatorcontrib>Kilian Sandholzer</creatorcontrib><creatorcontrib>Gritsch, Andreas</creatorcontrib><creatorcontrib>Chanelière, Thierry</creatorcontrib><creatorcontrib>Reiserer, Andreas</creatorcontrib><title>Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon</title><title>arXiv.org</title><description>The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission in the minimal-loss band of optical fibers. Recent studies have reported two distinct sites in the silicon lattice in which erbium can be reproducibly integrated with particularly promising properties. Here, for an in-depth analysis of these sites, resonant fluorescence spectroscopy is performed on a nanophotonic waveguide in magnetic fields applied along different orientations. In this way, the site symmetry is determined, the spin Hamiltonian is reconstructed and a partial fit of the crystal field Hamiltonian is performed. The obtained quantitative description of the magnetic interaction allows the optimization of Zeeman splittings, optical branching ratios or microwave driving to the needs of future experiments. Beyond that, the derived site symmetry constrains the location of the erbium dopant in the silicon unit cell. This is a key step towards a detailed microscopic understanding of the erbium sites, which may help to improve the integration yield, thus paving the way to efficient nanophotonic quantum memories based on the Er:Si platform.</description><subject>Crystal lattices</subject><subject>Dopants</subject><subject>Emitters</subject><subject>Erbium</subject><subject>Hamiltonian functions</subject><subject>Magnetic properties</subject><subject>Nanofabrication</subject><subject>Optical fibers</subject><subject>Optical properties</subject><subject>Photonic crystals</subject><subject>Silicon</subject><subject>Silicon devices</subject><subject>Symmetry</subject><subject>Unit cell</subject><subject>Waveguides</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AYRgdBsNQ-gLsB14lzT7KUoFYouCm4LH_mQqekM3FmIurTG7Srsznn-xC6o6QWrZTkAdKX_6yZIF1NlGzoFVoxzmnVCsZu0CbnEyGEqYZJyVfovT9CAl1s8j9QfAw4OlyOFufJBwzBYJ2-c4ERO29Hg7dw9mOJwcOfadPg5zM2cYJQMl6S7EevY7hF1w7GbDcXrtH--Wnfb6vd28tr_7irQDJaCa47zlwnuaVa6UYYaQYlmVFMDK1hTuhFEIRSOgDjGpQTVHFQghhnreBrdP8_O6X4MdtcDqc4p7A8HjgVrWoJaSn_BcooUz4</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Holzäpfel, Adrian</creator><creator>Rinner, Stephan</creator><creator>Kilian Sandholzer</creator><creator>Gritsch, Andreas</creator><creator>Chanelière, Thierry</creator><creator>Reiserer, Andreas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240910</creationdate><title>Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon</title><author>Holzäpfel, Adrian ; Rinner, Stephan ; Kilian Sandholzer ; Gritsch, Andreas ; Chanelière, Thierry ; Reiserer, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-43c932f953e1c6c74d5db652d624b8d2f4cc9340111ba23ca6f4163a640dfee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal lattices</topic><topic>Dopants</topic><topic>Emitters</topic><topic>Erbium</topic><topic>Hamiltonian functions</topic><topic>Magnetic properties</topic><topic>Nanofabrication</topic><topic>Optical fibers</topic><topic>Optical properties</topic><topic>Photonic crystals</topic><topic>Silicon</topic><topic>Silicon devices</topic><topic>Symmetry</topic><topic>Unit cell</topic><topic>Waveguides</topic><toplevel>online_resources</toplevel><creatorcontrib>Holzäpfel, Adrian</creatorcontrib><creatorcontrib>Rinner, Stephan</creatorcontrib><creatorcontrib>Kilian Sandholzer</creatorcontrib><creatorcontrib>Gritsch, Andreas</creatorcontrib><creatorcontrib>Chanelière, Thierry</creatorcontrib><creatorcontrib>Reiserer, Andreas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holzäpfel, Adrian</au><au>Rinner, Stephan</au><au>Kilian Sandholzer</au><au>Gritsch, Andreas</au><au>Chanelière, Thierry</au><au>Reiserer, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon</atitle><jtitle>arXiv.org</jtitle><date>2024-09-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission in the minimal-loss band of optical fibers. Recent studies have reported two distinct sites in the silicon lattice in which erbium can be reproducibly integrated with particularly promising properties. Here, for an in-depth analysis of these sites, resonant fluorescence spectroscopy is performed on a nanophotonic waveguide in magnetic fields applied along different orientations. In this way, the site symmetry is determined, the spin Hamiltonian is reconstructed and a partial fit of the crystal field Hamiltonian is performed. The obtained quantitative description of the magnetic interaction allows the optimization of Zeeman splittings, optical branching ratios or microwave driving to the needs of future experiments. Beyond that, the derived site symmetry constrains the location of the erbium dopant in the silicon unit cell. This is a key step towards a detailed microscopic understanding of the erbium sites, which may help to improve the integration yield, thus paving the way to efficient nanophotonic quantum memories based on the Er:Si platform.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2409.06571</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3148680081
source Publicly Available Content Database
subjects Crystal lattices
Dopants
Emitters
Erbium
Hamiltonian functions
Magnetic properties
Nanofabrication
Optical fibers
Optical properties
Photonic crystals
Silicon
Silicon devices
Symmetry
Unit cell
Waveguides
title Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20spin%20and%20crystal%20field%20Hamiltonian%20of%20erbium%20dopants%20in%20silicon&rft.jtitle=arXiv.org&rft.au=Holz%C3%A4pfel,%20Adrian&rft.date=2024-09-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2409.06571&rft_dat=%3Cproquest%3E3148680081%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-43c932f953e1c6c74d5db652d624b8d2f4cc9340111ba23ca6f4163a640dfee43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148680081&rft_id=info:pmid/&rfr_iscdi=true