Loading…
Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon
The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Holzäpfel, Adrian Rinner, Stephan Kilian Sandholzer Gritsch, Andreas Chanelière, Thierry Reiserer, Andreas |
description | The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission in the minimal-loss band of optical fibers. Recent studies have reported two distinct sites in the silicon lattice in which erbium can be reproducibly integrated with particularly promising properties. Here, for an in-depth analysis of these sites, resonant fluorescence spectroscopy is performed on a nanophotonic waveguide in magnetic fields applied along different orientations. In this way, the site symmetry is determined, the spin Hamiltonian is reconstructed and a partial fit of the crystal field Hamiltonian is performed. The obtained quantitative description of the magnetic interaction allows the optimization of Zeeman splittings, optical branching ratios or microwave driving to the needs of future experiments. Beyond that, the derived site symmetry constrains the location of the erbium dopant in the silicon unit cell. This is a key step towards a detailed microscopic understanding of the erbium sites, which may help to improve the integration yield, thus paving the way to efficient nanophotonic quantum memories based on the Er:Si platform. |
doi_str_mv | 10.48550/arxiv.2409.06571 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3148680081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148680081</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-43c932f953e1c6c74d5db652d624b8d2f4cc9340111ba23ca6f4163a640dfee43</originalsourceid><addsrcrecordid>eNotjctKw0AYRgdBsNQ-gLsB14lzT7KUoFYouCm4LH_mQqekM3FmIurTG7Srsznn-xC6o6QWrZTkAdKX_6yZIF1NlGzoFVoxzmnVCsZu0CbnEyGEqYZJyVfovT9CAl1s8j9QfAw4OlyOFufJBwzBYJ2-c4ERO29Hg7dw9mOJwcOfadPg5zM2cYJQMl6S7EevY7hF1w7GbDcXrtH--Wnfb6vd28tr_7irQDJaCa47zlwnuaVa6UYYaQYlmVFMDK1hTuhFEIRSOgDjGpQTVHFQghhnreBrdP8_O6X4MdtcDqc4p7A8HjgVrWoJaSn_BcooUz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148680081</pqid></control><display><type>article</type><title>Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon</title><source>Publicly Available Content Database</source><creator>Holzäpfel, Adrian ; Rinner, Stephan ; Kilian Sandholzer ; Gritsch, Andreas ; Chanelière, Thierry ; Reiserer, Andreas</creator><creatorcontrib>Holzäpfel, Adrian ; Rinner, Stephan ; Kilian Sandholzer ; Gritsch, Andreas ; Chanelière, Thierry ; Reiserer, Andreas</creatorcontrib><description>The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission in the minimal-loss band of optical fibers. Recent studies have reported two distinct sites in the silicon lattice in which erbium can be reproducibly integrated with particularly promising properties. Here, for an in-depth analysis of these sites, resonant fluorescence spectroscopy is performed on a nanophotonic waveguide in magnetic fields applied along different orientations. In this way, the site symmetry is determined, the spin Hamiltonian is reconstructed and a partial fit of the crystal field Hamiltonian is performed. The obtained quantitative description of the magnetic interaction allows the optimization of Zeeman splittings, optical branching ratios or microwave driving to the needs of future experiments. Beyond that, the derived site symmetry constrains the location of the erbium dopant in the silicon unit cell. This is a key step towards a detailed microscopic understanding of the erbium sites, which may help to improve the integration yield, thus paving the way to efficient nanophotonic quantum memories based on the Er:Si platform.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2409.06571</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crystal lattices ; Dopants ; Emitters ; Erbium ; Hamiltonian functions ; Magnetic properties ; Nanofabrication ; Optical fibers ; Optical properties ; Photonic crystals ; Silicon ; Silicon devices ; Symmetry ; Unit cell ; Waveguides</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3148680081?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Holzäpfel, Adrian</creatorcontrib><creatorcontrib>Rinner, Stephan</creatorcontrib><creatorcontrib>Kilian Sandholzer</creatorcontrib><creatorcontrib>Gritsch, Andreas</creatorcontrib><creatorcontrib>Chanelière, Thierry</creatorcontrib><creatorcontrib>Reiserer, Andreas</creatorcontrib><title>Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon</title><title>arXiv.org</title><description>The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission in the minimal-loss band of optical fibers. Recent studies have reported two distinct sites in the silicon lattice in which erbium can be reproducibly integrated with particularly promising properties. Here, for an in-depth analysis of these sites, resonant fluorescence spectroscopy is performed on a nanophotonic waveguide in magnetic fields applied along different orientations. In this way, the site symmetry is determined, the spin Hamiltonian is reconstructed and a partial fit of the crystal field Hamiltonian is performed. The obtained quantitative description of the magnetic interaction allows the optimization of Zeeman splittings, optical branching ratios or microwave driving to the needs of future experiments. Beyond that, the derived site symmetry constrains the location of the erbium dopant in the silicon unit cell. This is a key step towards a detailed microscopic understanding of the erbium sites, which may help to improve the integration yield, thus paving the way to efficient nanophotonic quantum memories based on the Er:Si platform.</description><subject>Crystal lattices</subject><subject>Dopants</subject><subject>Emitters</subject><subject>Erbium</subject><subject>Hamiltonian functions</subject><subject>Magnetic properties</subject><subject>Nanofabrication</subject><subject>Optical fibers</subject><subject>Optical properties</subject><subject>Photonic crystals</subject><subject>Silicon</subject><subject>Silicon devices</subject><subject>Symmetry</subject><subject>Unit cell</subject><subject>Waveguides</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AYRgdBsNQ-gLsB14lzT7KUoFYouCm4LH_mQqekM3FmIurTG7Srsznn-xC6o6QWrZTkAdKX_6yZIF1NlGzoFVoxzmnVCsZu0CbnEyGEqYZJyVfovT9CAl1s8j9QfAw4OlyOFufJBwzBYJ2-c4ERO29Hg7dw9mOJwcOfadPg5zM2cYJQMl6S7EevY7hF1w7GbDcXrtH--Wnfb6vd28tr_7irQDJaCa47zlwnuaVa6UYYaQYlmVFMDK1hTuhFEIRSOgDjGpQTVHFQghhnreBrdP8_O6X4MdtcDqc4p7A8HjgVrWoJaSn_BcooUz4</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Holzäpfel, Adrian</creator><creator>Rinner, Stephan</creator><creator>Kilian Sandholzer</creator><creator>Gritsch, Andreas</creator><creator>Chanelière, Thierry</creator><creator>Reiserer, Andreas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240910</creationdate><title>Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon</title><author>Holzäpfel, Adrian ; Rinner, Stephan ; Kilian Sandholzer ; Gritsch, Andreas ; Chanelière, Thierry ; Reiserer, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-43c932f953e1c6c74d5db652d624b8d2f4cc9340111ba23ca6f4163a640dfee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal lattices</topic><topic>Dopants</topic><topic>Emitters</topic><topic>Erbium</topic><topic>Hamiltonian functions</topic><topic>Magnetic properties</topic><topic>Nanofabrication</topic><topic>Optical fibers</topic><topic>Optical properties</topic><topic>Photonic crystals</topic><topic>Silicon</topic><topic>Silicon devices</topic><topic>Symmetry</topic><topic>Unit cell</topic><topic>Waveguides</topic><toplevel>online_resources</toplevel><creatorcontrib>Holzäpfel, Adrian</creatorcontrib><creatorcontrib>Rinner, Stephan</creatorcontrib><creatorcontrib>Kilian Sandholzer</creatorcontrib><creatorcontrib>Gritsch, Andreas</creatorcontrib><creatorcontrib>Chanelière, Thierry</creatorcontrib><creatorcontrib>Reiserer, Andreas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holzäpfel, Adrian</au><au>Rinner, Stephan</au><au>Kilian Sandholzer</au><au>Gritsch, Andreas</au><au>Chanelière, Thierry</au><au>Reiserer, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon</atitle><jtitle>arXiv.org</jtitle><date>2024-09-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission in the minimal-loss band of optical fibers. Recent studies have reported two distinct sites in the silicon lattice in which erbium can be reproducibly integrated with particularly promising properties. Here, for an in-depth analysis of these sites, resonant fluorescence spectroscopy is performed on a nanophotonic waveguide in magnetic fields applied along different orientations. In this way, the site symmetry is determined, the spin Hamiltonian is reconstructed and a partial fit of the crystal field Hamiltonian is performed. The obtained quantitative description of the magnetic interaction allows the optimization of Zeeman splittings, optical branching ratios or microwave driving to the needs of future experiments. Beyond that, the derived site symmetry constrains the location of the erbium dopant in the silicon unit cell. This is a key step towards a detailed microscopic understanding of the erbium sites, which may help to improve the integration yield, thus paving the way to efficient nanophotonic quantum memories based on the Er:Si platform.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2409.06571</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3148680081 |
source | Publicly Available Content Database |
subjects | Crystal lattices Dopants Emitters Erbium Hamiltonian functions Magnetic properties Nanofabrication Optical fibers Optical properties Photonic crystals Silicon Silicon devices Symmetry Unit cell Waveguides |
title | Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20spin%20and%20crystal%20field%20Hamiltonian%20of%20erbium%20dopants%20in%20silicon&rft.jtitle=arXiv.org&rft.au=Holz%C3%A4pfel,%20Adrian&rft.date=2024-09-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2409.06571&rft_dat=%3Cproquest%3E3148680081%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-43c932f953e1c6c74d5db652d624b8d2f4cc9340111ba23ca6f4163a640dfee43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148680081&rft_id=info:pmid/&rfr_iscdi=true |