Loading…
C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image
Photovoltaic (PV) cell modules are the core components of PV power generation systems, and defects in these modules can significantly affect photovoltaic conversion efficiency and lifespan. Electroluminescence (EL) testing is a method used to detect defects during the production process of these mod...
Saved in:
Published in: | Nondestructive testing and evaluation 2025-01, Vol.40 (1), p.309-331 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13 |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13 |
container_end_page | 331 |
container_issue | 1 |
container_start_page | 309 |
container_title | Nondestructive testing and evaluation |
container_volume | 40 |
creator | Zhu, Jiahao Zhou, Deqiang Lu, Rongsheng Liu, Xu Wan, Dahang |
description | Photovoltaic (PV) cell modules are the core components of PV power generation systems, and defects in these modules can significantly affect photovoltaic conversion efficiency and lifespan. Electroluminescence (EL) testing is a method used to detect defects during the production process of these modules. To address the issue of low defect detection accuracy caused by the complex background and large-scale variations of EL images, we propose an object detection network named C2DEM-YOLO to improve the accuracy of defect detection. Firstly, a deep-shallow feature extraction module called C2Dense is designed to replace the C2f module in the YOLOv8's backbone. Secondly, a cross-space multi-scale attention(EMA) is introduced after C2Dense to apply pixel-level attention to the extracted features, which suppresses background information while enhancing useful features for defect detection. Finally, by replacing CIoU with Inner-CIoU, we introduce auxiliary regression boxes to improve the accuracy of detection and the generalisation ability of the model. Experimental results show that C2DEM-YOLO achieves an average precision of 92.31% on the PVEL-AD dataset, which has 2.41%, 1.93%, and 1.56% improvement compared to YOLOv5s, YOLOv8n, YOLOv8s, respectively. Moreover, on our self-built dataset, the mAP@0.5 and mAP@0.5:0.95 of C2DEM-YOLO are improved by 1.42% and 1.46% compared to YOLOv8n, reaching 84.07%. |
doi_str_mv | 10.1080/10589759.2024.2319263 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148715029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148715029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEElD4BCRLrFM8zsMOK1ApD6moG1iwshxnDKmcuNhpUf8eRy1bVteWztyxT5JcAZ0CFfQGaCEqXlRTRlk-ZRlUrMyOkjPIOU9ZyeE4niOTjtBpch7CilIGBRdnyWrGHuav6cdysbwlbbf2bosNGa9bQYzzpEGDeogxxGhdT5wh6y83uK2zg2o10Wgt6VyzsRhI2xO0EfTObrq2x6Cx1xiL1SdeJCdG2YCXh5wk74_zt9lzulg-vczuF6lmpRjSkjMseZErkWcMsKAl1loLndeq1gKAIlOippUoKlDGsDxXnJcARmitjYJsklzve-NnvjcYBrlyG9_HlTKDXHAoKKsiVewp7V0IHo1c-_hMv5NA5ahV_mmVo1Z50Brn7vZzbR_1dOrHedvIQe2s88arXrfjmn8rfgFyHX7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148715029</pqid></control><display><type>article</type><title>C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zhu, Jiahao ; Zhou, Deqiang ; Lu, Rongsheng ; Liu, Xu ; Wan, Dahang</creator><creatorcontrib>Zhu, Jiahao ; Zhou, Deqiang ; Lu, Rongsheng ; Liu, Xu ; Wan, Dahang</creatorcontrib><description>Photovoltaic (PV) cell modules are the core components of PV power generation systems, and defects in these modules can significantly affect photovoltaic conversion efficiency and lifespan. Electroluminescence (EL) testing is a method used to detect defects during the production process of these modules. To address the issue of low defect detection accuracy caused by the complex background and large-scale variations of EL images, we propose an object detection network named C2DEM-YOLO to improve the accuracy of defect detection. Firstly, a deep-shallow feature extraction module called C2Dense is designed to replace the C2f module in the YOLOv8's backbone. Secondly, a cross-space multi-scale attention(EMA) is introduced after C2Dense to apply pixel-level attention to the extracted features, which suppresses background information while enhancing useful features for defect detection. Finally, by replacing CIoU with Inner-CIoU, we introduce auxiliary regression boxes to improve the accuracy of detection and the generalisation ability of the model. Experimental results show that C2DEM-YOLO achieves an average precision of 92.31% on the PVEL-AD dataset, which has 2.41%, 1.93%, and 1.56% improvement compared to YOLOv5s, YOLOv8n, YOLOv8s, respectively. Moreover, on our self-built dataset, the mAP@0.5 and mAP@0.5:0.95 of C2DEM-YOLO are improved by 1.42% and 1.46% compared to YOLOv8n, reaching 84.07%.</description><identifier>ISSN: 1058-9759</identifier><identifier>EISSN: 1477-2671</identifier><identifier>DOI: 10.1080/10589759.2024.2319263</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Accuracy ; attention mechanism ; auxiliary regression boxes ; Datasets ; defect detection ; Defects ; Electroluminescence ; Energy conversion efficiency ; Feature extraction ; Modules ; Object recognition ; Photovoltaic cell modules ; Photovoltaic cells ; Photovoltaic conversion ; Regression models ; Solar power generation ; YOLOv8</subject><ispartof>Nondestructive testing and evaluation, 2025-01, Vol.40 (1), p.309-331</ispartof><rights>2024 Informa UK Limited, trading as Taylor & Francis Group 2024</rights><rights>2024 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13</citedby><cites>FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Jiahao</creatorcontrib><creatorcontrib>Zhou, Deqiang</creatorcontrib><creatorcontrib>Lu, Rongsheng</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Wan, Dahang</creatorcontrib><title>C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image</title><title>Nondestructive testing and evaluation</title><description>Photovoltaic (PV) cell modules are the core components of PV power generation systems, and defects in these modules can significantly affect photovoltaic conversion efficiency and lifespan. Electroluminescence (EL) testing is a method used to detect defects during the production process of these modules. To address the issue of low defect detection accuracy caused by the complex background and large-scale variations of EL images, we propose an object detection network named C2DEM-YOLO to improve the accuracy of defect detection. Firstly, a deep-shallow feature extraction module called C2Dense is designed to replace the C2f module in the YOLOv8's backbone. Secondly, a cross-space multi-scale attention(EMA) is introduced after C2Dense to apply pixel-level attention to the extracted features, which suppresses background information while enhancing useful features for defect detection. Finally, by replacing CIoU with Inner-CIoU, we introduce auxiliary regression boxes to improve the accuracy of detection and the generalisation ability of the model. Experimental results show that C2DEM-YOLO achieves an average precision of 92.31% on the PVEL-AD dataset, which has 2.41%, 1.93%, and 1.56% improvement compared to YOLOv5s, YOLOv8n, YOLOv8s, respectively. Moreover, on our self-built dataset, the mAP@0.5 and mAP@0.5:0.95 of C2DEM-YOLO are improved by 1.42% and 1.46% compared to YOLOv8n, reaching 84.07%.</description><subject>Accuracy</subject><subject>attention mechanism</subject><subject>auxiliary regression boxes</subject><subject>Datasets</subject><subject>defect detection</subject><subject>Defects</subject><subject>Electroluminescence</subject><subject>Energy conversion efficiency</subject><subject>Feature extraction</subject><subject>Modules</subject><subject>Object recognition</subject><subject>Photovoltaic cell modules</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Regression models</subject><subject>Solar power generation</subject><subject>YOLOv8</subject><issn>1058-9759</issn><issn>1477-2671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEElD4BCRLrFM8zsMOK1ApD6moG1iwshxnDKmcuNhpUf8eRy1bVteWztyxT5JcAZ0CFfQGaCEqXlRTRlk-ZRlUrMyOkjPIOU9ZyeE4niOTjtBpch7CilIGBRdnyWrGHuav6cdysbwlbbf2bosNGa9bQYzzpEGDeogxxGhdT5wh6y83uK2zg2o10Wgt6VyzsRhI2xO0EfTObrq2x6Cx1xiL1SdeJCdG2YCXh5wk74_zt9lzulg-vczuF6lmpRjSkjMseZErkWcMsKAl1loLndeq1gKAIlOippUoKlDGsDxXnJcARmitjYJsklzve-NnvjcYBrlyG9_HlTKDXHAoKKsiVewp7V0IHo1c-_hMv5NA5ahV_mmVo1Z50Brn7vZzbR_1dOrHedvIQe2s88arXrfjmn8rfgFyHX7E</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Zhu, Jiahao</creator><creator>Zhou, Deqiang</creator><creator>Lu, Rongsheng</creator><creator>Liu, Xu</creator><creator>Wan, Dahang</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20250102</creationdate><title>C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image</title><author>Zhu, Jiahao ; Zhou, Deqiang ; Lu, Rongsheng ; Liu, Xu ; Wan, Dahang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>attention mechanism</topic><topic>auxiliary regression boxes</topic><topic>Datasets</topic><topic>defect detection</topic><topic>Defects</topic><topic>Electroluminescence</topic><topic>Energy conversion efficiency</topic><topic>Feature extraction</topic><topic>Modules</topic><topic>Object recognition</topic><topic>Photovoltaic cell modules</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Regression models</topic><topic>Solar power generation</topic><topic>YOLOv8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jiahao</creatorcontrib><creatorcontrib>Zhou, Deqiang</creatorcontrib><creatorcontrib>Lu, Rongsheng</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Wan, Dahang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jiahao</au><au>Zhou, Deqiang</au><au>Lu, Rongsheng</au><au>Liu, Xu</au><au>Wan, Dahang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image</atitle><jtitle>Nondestructive testing and evaluation</jtitle><date>2025-01-02</date><risdate>2025</risdate><volume>40</volume><issue>1</issue><spage>309</spage><epage>331</epage><pages>309-331</pages><issn>1058-9759</issn><eissn>1477-2671</eissn><abstract>Photovoltaic (PV) cell modules are the core components of PV power generation systems, and defects in these modules can significantly affect photovoltaic conversion efficiency and lifespan. Electroluminescence (EL) testing is a method used to detect defects during the production process of these modules. To address the issue of low defect detection accuracy caused by the complex background and large-scale variations of EL images, we propose an object detection network named C2DEM-YOLO to improve the accuracy of defect detection. Firstly, a deep-shallow feature extraction module called C2Dense is designed to replace the C2f module in the YOLOv8's backbone. Secondly, a cross-space multi-scale attention(EMA) is introduced after C2Dense to apply pixel-level attention to the extracted features, which suppresses background information while enhancing useful features for defect detection. Finally, by replacing CIoU with Inner-CIoU, we introduce auxiliary regression boxes to improve the accuracy of detection and the generalisation ability of the model. Experimental results show that C2DEM-YOLO achieves an average precision of 92.31% on the PVEL-AD dataset, which has 2.41%, 1.93%, and 1.56% improvement compared to YOLOv5s, YOLOv8n, YOLOv8s, respectively. Moreover, on our self-built dataset, the mAP@0.5 and mAP@0.5:0.95 of C2DEM-YOLO are improved by 1.42% and 1.46% compared to YOLOv8n, reaching 84.07%.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/10589759.2024.2319263</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9759 |
ispartof | Nondestructive testing and evaluation, 2025-01, Vol.40 (1), p.309-331 |
issn | 1058-9759 1477-2671 |
language | eng |
recordid | cdi_proquest_journals_3148715029 |
source | Taylor and Francis Science and Technology Collection |
subjects | Accuracy attention mechanism auxiliary regression boxes Datasets defect detection Defects Electroluminescence Energy conversion efficiency Feature extraction Modules Object recognition Photovoltaic cell modules Photovoltaic cells Photovoltaic conversion Regression models Solar power generation YOLOv8 |
title | C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C2DEM-YOLO:%20improved%20YOLOv8%20for%20defect%20detection%20of%20photovoltaic%20cell%20modules%20in%20electroluminescence%20image&rft.jtitle=Nondestructive%20testing%20and%20evaluation&rft.au=Zhu,%20Jiahao&rft.date=2025-01-02&rft.volume=40&rft.issue=1&rft.spage=309&rft.epage=331&rft.pages=309-331&rft.issn=1058-9759&rft.eissn=1477-2671&rft_id=info:doi/10.1080/10589759.2024.2319263&rft_dat=%3Cproquest_cross%3E3148715029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148715029&rft_id=info:pmid/&rfr_iscdi=true |