Loading…

C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image

Photovoltaic (PV) cell modules are the core components of PV power generation systems, and defects in these modules can significantly affect photovoltaic conversion efficiency and lifespan. Electroluminescence (EL) testing is a method used to detect defects during the production process of these mod...

Full description

Saved in:
Bibliographic Details
Published in:Nondestructive testing and evaluation 2025-01, Vol.40 (1), p.309-331
Main Authors: Zhu, Jiahao, Zhou, Deqiang, Lu, Rongsheng, Liu, Xu, Wan, Dahang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13
cites cdi_FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13
container_end_page 331
container_issue 1
container_start_page 309
container_title Nondestructive testing and evaluation
container_volume 40
creator Zhu, Jiahao
Zhou, Deqiang
Lu, Rongsheng
Liu, Xu
Wan, Dahang
description Photovoltaic (PV) cell modules are the core components of PV power generation systems, and defects in these modules can significantly affect photovoltaic conversion efficiency and lifespan. Electroluminescence (EL) testing is a method used to detect defects during the production process of these modules. To address the issue of low defect detection accuracy caused by the complex background and large-scale variations of EL images, we propose an object detection network named C2DEM-YOLO to improve the accuracy of defect detection. Firstly, a deep-shallow feature extraction module called C2Dense is designed to replace the C2f module in the YOLOv8's backbone. Secondly, a cross-space multi-scale attention(EMA) is introduced after C2Dense to apply pixel-level attention to the extracted features, which suppresses background information while enhancing useful features for defect detection. Finally, by replacing CIoU with Inner-CIoU, we introduce auxiliary regression boxes to improve the accuracy of detection and the generalisation ability of the model. Experimental results show that C2DEM-YOLO achieves an average precision of 92.31% on the PVEL-AD dataset, which has 2.41%, 1.93%, and 1.56% improvement compared to YOLOv5s, YOLOv8n, YOLOv8s, respectively. Moreover, on our self-built dataset, the mAP@0.5 and mAP@0.5:0.95 of C2DEM-YOLO are improved by 1.42% and 1.46% compared to YOLOv8n, reaching 84.07%.
doi_str_mv 10.1080/10589759.2024.2319263
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148715029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148715029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEElD4BCRLrFM8zsMOK1ApD6moG1iwshxnDKmcuNhpUf8eRy1bVteWztyxT5JcAZ0CFfQGaCEqXlRTRlk-ZRlUrMyOkjPIOU9ZyeE4niOTjtBpch7CilIGBRdnyWrGHuav6cdysbwlbbf2bosNGa9bQYzzpEGDeogxxGhdT5wh6y83uK2zg2o10Wgt6VyzsRhI2xO0EfTObrq2x6Cx1xiL1SdeJCdG2YCXh5wk74_zt9lzulg-vczuF6lmpRjSkjMseZErkWcMsKAl1loLndeq1gKAIlOippUoKlDGsDxXnJcARmitjYJsklzve-NnvjcYBrlyG9_HlTKDXHAoKKsiVewp7V0IHo1c-_hMv5NA5ahV_mmVo1Z50Brn7vZzbR_1dOrHedvIQe2s88arXrfjmn8rfgFyHX7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148715029</pqid></control><display><type>article</type><title>C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zhu, Jiahao ; Zhou, Deqiang ; Lu, Rongsheng ; Liu, Xu ; Wan, Dahang</creator><creatorcontrib>Zhu, Jiahao ; Zhou, Deqiang ; Lu, Rongsheng ; Liu, Xu ; Wan, Dahang</creatorcontrib><description>Photovoltaic (PV) cell modules are the core components of PV power generation systems, and defects in these modules can significantly affect photovoltaic conversion efficiency and lifespan. Electroluminescence (EL) testing is a method used to detect defects during the production process of these modules. To address the issue of low defect detection accuracy caused by the complex background and large-scale variations of EL images, we propose an object detection network named C2DEM-YOLO to improve the accuracy of defect detection. Firstly, a deep-shallow feature extraction module called C2Dense is designed to replace the C2f module in the YOLOv8's backbone. Secondly, a cross-space multi-scale attention(EMA) is introduced after C2Dense to apply pixel-level attention to the extracted features, which suppresses background information while enhancing useful features for defect detection. Finally, by replacing CIoU with Inner-CIoU, we introduce auxiliary regression boxes to improve the accuracy of detection and the generalisation ability of the model. Experimental results show that C2DEM-YOLO achieves an average precision of 92.31% on the PVEL-AD dataset, which has 2.41%, 1.93%, and 1.56% improvement compared to YOLOv5s, YOLOv8n, YOLOv8s, respectively. Moreover, on our self-built dataset, the mAP@0.5 and mAP@0.5:0.95 of C2DEM-YOLO are improved by 1.42% and 1.46% compared to YOLOv8n, reaching 84.07%.</description><identifier>ISSN: 1058-9759</identifier><identifier>EISSN: 1477-2671</identifier><identifier>DOI: 10.1080/10589759.2024.2319263</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Accuracy ; attention mechanism ; auxiliary regression boxes ; Datasets ; defect detection ; Defects ; Electroluminescence ; Energy conversion efficiency ; Feature extraction ; Modules ; Object recognition ; Photovoltaic cell modules ; Photovoltaic cells ; Photovoltaic conversion ; Regression models ; Solar power generation ; YOLOv8</subject><ispartof>Nondestructive testing and evaluation, 2025-01, Vol.40 (1), p.309-331</ispartof><rights>2024 Informa UK Limited, trading as Taylor &amp; Francis Group 2024</rights><rights>2024 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13</citedby><cites>FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Jiahao</creatorcontrib><creatorcontrib>Zhou, Deqiang</creatorcontrib><creatorcontrib>Lu, Rongsheng</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Wan, Dahang</creatorcontrib><title>C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image</title><title>Nondestructive testing and evaluation</title><description>Photovoltaic (PV) cell modules are the core components of PV power generation systems, and defects in these modules can significantly affect photovoltaic conversion efficiency and lifespan. Electroluminescence (EL) testing is a method used to detect defects during the production process of these modules. To address the issue of low defect detection accuracy caused by the complex background and large-scale variations of EL images, we propose an object detection network named C2DEM-YOLO to improve the accuracy of defect detection. Firstly, a deep-shallow feature extraction module called C2Dense is designed to replace the C2f module in the YOLOv8's backbone. Secondly, a cross-space multi-scale attention(EMA) is introduced after C2Dense to apply pixel-level attention to the extracted features, which suppresses background information while enhancing useful features for defect detection. Finally, by replacing CIoU with Inner-CIoU, we introduce auxiliary regression boxes to improve the accuracy of detection and the generalisation ability of the model. Experimental results show that C2DEM-YOLO achieves an average precision of 92.31% on the PVEL-AD dataset, which has 2.41%, 1.93%, and 1.56% improvement compared to YOLOv5s, YOLOv8n, YOLOv8s, respectively. Moreover, on our self-built dataset, the mAP@0.5 and mAP@0.5:0.95 of C2DEM-YOLO are improved by 1.42% and 1.46% compared to YOLOv8n, reaching 84.07%.</description><subject>Accuracy</subject><subject>attention mechanism</subject><subject>auxiliary regression boxes</subject><subject>Datasets</subject><subject>defect detection</subject><subject>Defects</subject><subject>Electroluminescence</subject><subject>Energy conversion efficiency</subject><subject>Feature extraction</subject><subject>Modules</subject><subject>Object recognition</subject><subject>Photovoltaic cell modules</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Regression models</subject><subject>Solar power generation</subject><subject>YOLOv8</subject><issn>1058-9759</issn><issn>1477-2671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEElD4BCRLrFM8zsMOK1ApD6moG1iwshxnDKmcuNhpUf8eRy1bVteWztyxT5JcAZ0CFfQGaCEqXlRTRlk-ZRlUrMyOkjPIOU9ZyeE4niOTjtBpch7CilIGBRdnyWrGHuav6cdysbwlbbf2bosNGa9bQYzzpEGDeogxxGhdT5wh6y83uK2zg2o10Wgt6VyzsRhI2xO0EfTObrq2x6Cx1xiL1SdeJCdG2YCXh5wk74_zt9lzulg-vczuF6lmpRjSkjMseZErkWcMsKAl1loLndeq1gKAIlOippUoKlDGsDxXnJcARmitjYJsklzve-NnvjcYBrlyG9_HlTKDXHAoKKsiVewp7V0IHo1c-_hMv5NA5ahV_mmVo1Z50Brn7vZzbR_1dOrHedvIQe2s88arXrfjmn8rfgFyHX7E</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Zhu, Jiahao</creator><creator>Zhou, Deqiang</creator><creator>Lu, Rongsheng</creator><creator>Liu, Xu</creator><creator>Wan, Dahang</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20250102</creationdate><title>C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image</title><author>Zhu, Jiahao ; Zhou, Deqiang ; Lu, Rongsheng ; Liu, Xu ; Wan, Dahang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>attention mechanism</topic><topic>auxiliary regression boxes</topic><topic>Datasets</topic><topic>defect detection</topic><topic>Defects</topic><topic>Electroluminescence</topic><topic>Energy conversion efficiency</topic><topic>Feature extraction</topic><topic>Modules</topic><topic>Object recognition</topic><topic>Photovoltaic cell modules</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Regression models</topic><topic>Solar power generation</topic><topic>YOLOv8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jiahao</creatorcontrib><creatorcontrib>Zhou, Deqiang</creatorcontrib><creatorcontrib>Lu, Rongsheng</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Wan, Dahang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jiahao</au><au>Zhou, Deqiang</au><au>Lu, Rongsheng</au><au>Liu, Xu</au><au>Wan, Dahang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image</atitle><jtitle>Nondestructive testing and evaluation</jtitle><date>2025-01-02</date><risdate>2025</risdate><volume>40</volume><issue>1</issue><spage>309</spage><epage>331</epage><pages>309-331</pages><issn>1058-9759</issn><eissn>1477-2671</eissn><abstract>Photovoltaic (PV) cell modules are the core components of PV power generation systems, and defects in these modules can significantly affect photovoltaic conversion efficiency and lifespan. Electroluminescence (EL) testing is a method used to detect defects during the production process of these modules. To address the issue of low defect detection accuracy caused by the complex background and large-scale variations of EL images, we propose an object detection network named C2DEM-YOLO to improve the accuracy of defect detection. Firstly, a deep-shallow feature extraction module called C2Dense is designed to replace the C2f module in the YOLOv8's backbone. Secondly, a cross-space multi-scale attention(EMA) is introduced after C2Dense to apply pixel-level attention to the extracted features, which suppresses background information while enhancing useful features for defect detection. Finally, by replacing CIoU with Inner-CIoU, we introduce auxiliary regression boxes to improve the accuracy of detection and the generalisation ability of the model. Experimental results show that C2DEM-YOLO achieves an average precision of 92.31% on the PVEL-AD dataset, which has 2.41%, 1.93%, and 1.56% improvement compared to YOLOv5s, YOLOv8n, YOLOv8s, respectively. Moreover, on our self-built dataset, the mAP@0.5 and mAP@0.5:0.95 of C2DEM-YOLO are improved by 1.42% and 1.46% compared to YOLOv8n, reaching 84.07%.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10589759.2024.2319263</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1058-9759
ispartof Nondestructive testing and evaluation, 2025-01, Vol.40 (1), p.309-331
issn 1058-9759
1477-2671
language eng
recordid cdi_proquest_journals_3148715029
source Taylor and Francis Science and Technology Collection
subjects Accuracy
attention mechanism
auxiliary regression boxes
Datasets
defect detection
Defects
Electroluminescence
Energy conversion efficiency
Feature extraction
Modules
Object recognition
Photovoltaic cell modules
Photovoltaic cells
Photovoltaic conversion
Regression models
Solar power generation
YOLOv8
title C2DEM-YOLO: improved YOLOv8 for defect detection of photovoltaic cell modules in electroluminescence image
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C2DEM-YOLO:%20improved%20YOLOv8%20for%20defect%20detection%20of%20photovoltaic%20cell%20modules%20in%20electroluminescence%20image&rft.jtitle=Nondestructive%20testing%20and%20evaluation&rft.au=Zhu,%20Jiahao&rft.date=2025-01-02&rft.volume=40&rft.issue=1&rft.spage=309&rft.epage=331&rft.pages=309-331&rft.issn=1058-9759&rft.eissn=1477-2671&rft_id=info:doi/10.1080/10589759.2024.2319263&rft_dat=%3Cproquest_cross%3E3148715029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-672e6754a84321e506ebcc8c4babc8110e2a8b098591aff244a77611f8cccfa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148715029&rft_id=info:pmid/&rfr_iscdi=true