Loading…

An Empirical Analysis of Federated Learning Models Subject to Label-Flipping Adversarial Attack

In this paper, we empirically analyze adversarial attacks on selected federated learning models. The specific learning models considered are Multinominal Logistic Regression (MLR), Support Vector Classifier (SVC), Multilayer Perceptron (MLP), Convolution Neural Network (CNN), %Recurrent Neural Netwo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-12
Main Authors: Bhatnagar, Kunal, Chattanathan, Sagana, Dang, Angela, Eranki, Bhargav, Rana, Ronnit, Charan Sridhar, Vedam, Siddharth, Yao, Angie, Stamp, Mark
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bhatnagar, Kunal
Chattanathan, Sagana
Dang, Angela
Eranki, Bhargav
Rana, Ronnit
Charan Sridhar
Vedam, Siddharth
Yao, Angie
Stamp, Mark
description In this paper, we empirically analyze adversarial attacks on selected federated learning models. The specific learning models considered are Multinominal Logistic Regression (MLR), Support Vector Classifier (SVC), Multilayer Perceptron (MLP), Convolution Neural Network (CNN), %Recurrent Neural Network (RNN), Random Forest, XGBoost, and Long Short-Term Memory (LSTM). For each model, we simulate label-flipping attacks, experimenting extensively with 10 federated clients and 100 federated clients. We vary the percentage of adversarial clients from 10% to 100% and, simultaneously, the percentage of labels flipped by each adversarial client is also varied from 10% to 100%. Among other results, we find that models differ in their inherent robustness to the two vectors in our label-flipping attack, i.e., the percentage of adversarial clients, and the percentage of labels flipped by each adversarial client. We discuss the potential practical implications of our results.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3149108748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149108748</sourcerecordid><originalsourceid>FETCH-proquest_journals_31491087483</originalsourceid><addsrcrecordid>eNqNjcEKgkAUAJcgSMp_eNBZ0F1NO0ooHexUd1n1GWuba_vWoL-voA_oNJdhZsE8LkQUZDHnK-YTDWEY8l3Kk0R4rM5HKO6TsqqVGvJR6hcpAtNDiR1a6bCDCqUd1XiFk-lQE5znZsDWgTNQyQZ1UGo1TV8h755oSVr1bTkn29uGLXupCf0f12xbFpfDMZisecxIrh7MbD9bqkUU76MwS-NM_Ge9AS8bQ9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149108748</pqid></control><display><type>article</type><title>An Empirical Analysis of Federated Learning Models Subject to Label-Flipping Adversarial Attack</title><source>Publicly Available Content Database</source><creator>Bhatnagar, Kunal ; Chattanathan, Sagana ; Dang, Angela ; Eranki, Bhargav ; Rana, Ronnit ; Charan Sridhar ; Vedam, Siddharth ; Yao, Angie ; Stamp, Mark</creator><creatorcontrib>Bhatnagar, Kunal ; Chattanathan, Sagana ; Dang, Angela ; Eranki, Bhargav ; Rana, Ronnit ; Charan Sridhar ; Vedam, Siddharth ; Yao, Angie ; Stamp, Mark</creatorcontrib><description>In this paper, we empirically analyze adversarial attacks on selected federated learning models. The specific learning models considered are Multinominal Logistic Regression (MLR), Support Vector Classifier (SVC), Multilayer Perceptron (MLP), Convolution Neural Network (CNN), %Recurrent Neural Network (RNN), Random Forest, XGBoost, and Long Short-Term Memory (LSTM). For each model, we simulate label-flipping attacks, experimenting extensively with 10 federated clients and 100 federated clients. We vary the percentage of adversarial clients from 10% to 100% and, simultaneously, the percentage of labels flipped by each adversarial client is also varied from 10% to 100%. Among other results, we find that models differ in their inherent robustness to the two vectors in our label-flipping attack, i.e., the percentage of adversarial clients, and the percentage of labels flipped by each adversarial client. We discuss the potential practical implications of our results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Clients ; Empirical analysis ; Federated learning ; Labels ; Machine learning ; Multilayer perceptrons ; Recurrent neural networks</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3149108748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Bhatnagar, Kunal</creatorcontrib><creatorcontrib>Chattanathan, Sagana</creatorcontrib><creatorcontrib>Dang, Angela</creatorcontrib><creatorcontrib>Eranki, Bhargav</creatorcontrib><creatorcontrib>Rana, Ronnit</creatorcontrib><creatorcontrib>Charan Sridhar</creatorcontrib><creatorcontrib>Vedam, Siddharth</creatorcontrib><creatorcontrib>Yao, Angie</creatorcontrib><creatorcontrib>Stamp, Mark</creatorcontrib><title>An Empirical Analysis of Federated Learning Models Subject to Label-Flipping Adversarial Attack</title><title>arXiv.org</title><description>In this paper, we empirically analyze adversarial attacks on selected federated learning models. The specific learning models considered are Multinominal Logistic Regression (MLR), Support Vector Classifier (SVC), Multilayer Perceptron (MLP), Convolution Neural Network (CNN), %Recurrent Neural Network (RNN), Random Forest, XGBoost, and Long Short-Term Memory (LSTM). For each model, we simulate label-flipping attacks, experimenting extensively with 10 federated clients and 100 federated clients. We vary the percentage of adversarial clients from 10% to 100% and, simultaneously, the percentage of labels flipped by each adversarial client is also varied from 10% to 100%. Among other results, we find that models differ in their inherent robustness to the two vectors in our label-flipping attack, i.e., the percentage of adversarial clients, and the percentage of labels flipped by each adversarial client. We discuss the potential practical implications of our results.</description><subject>Artificial neural networks</subject><subject>Clients</subject><subject>Empirical analysis</subject><subject>Federated learning</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Recurrent neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcEKgkAUAJcgSMp_eNBZ0F1NO0ooHexUd1n1GWuba_vWoL-voA_oNJdhZsE8LkQUZDHnK-YTDWEY8l3Kk0R4rM5HKO6TsqqVGvJR6hcpAtNDiR1a6bCDCqUd1XiFk-lQE5znZsDWgTNQyQZ1UGo1TV8h755oSVr1bTkn29uGLXupCf0f12xbFpfDMZisecxIrh7MbD9bqkUU76MwS-NM_Ge9AS8bQ9M</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Bhatnagar, Kunal</creator><creator>Chattanathan, Sagana</creator><creator>Dang, Angela</creator><creator>Eranki, Bhargav</creator><creator>Rana, Ronnit</creator><creator>Charan Sridhar</creator><creator>Vedam, Siddharth</creator><creator>Yao, Angie</creator><creator>Stamp, Mark</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241224</creationdate><title>An Empirical Analysis of Federated Learning Models Subject to Label-Flipping Adversarial Attack</title><author>Bhatnagar, Kunal ; Chattanathan, Sagana ; Dang, Angela ; Eranki, Bhargav ; Rana, Ronnit ; Charan Sridhar ; Vedam, Siddharth ; Yao, Angie ; Stamp, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31491087483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Clients</topic><topic>Empirical analysis</topic><topic>Federated learning</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhatnagar, Kunal</creatorcontrib><creatorcontrib>Chattanathan, Sagana</creatorcontrib><creatorcontrib>Dang, Angela</creatorcontrib><creatorcontrib>Eranki, Bhargav</creatorcontrib><creatorcontrib>Rana, Ronnit</creatorcontrib><creatorcontrib>Charan Sridhar</creatorcontrib><creatorcontrib>Vedam, Siddharth</creatorcontrib><creatorcontrib>Yao, Angie</creatorcontrib><creatorcontrib>Stamp, Mark</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatnagar, Kunal</au><au>Chattanathan, Sagana</au><au>Dang, Angela</au><au>Eranki, Bhargav</au><au>Rana, Ronnit</au><au>Charan Sridhar</au><au>Vedam, Siddharth</au><au>Yao, Angie</au><au>Stamp, Mark</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Empirical Analysis of Federated Learning Models Subject to Label-Flipping Adversarial Attack</atitle><jtitle>arXiv.org</jtitle><date>2024-12-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we empirically analyze adversarial attacks on selected federated learning models. The specific learning models considered are Multinominal Logistic Regression (MLR), Support Vector Classifier (SVC), Multilayer Perceptron (MLP), Convolution Neural Network (CNN), %Recurrent Neural Network (RNN), Random Forest, XGBoost, and Long Short-Term Memory (LSTM). For each model, we simulate label-flipping attacks, experimenting extensively with 10 federated clients and 100 federated clients. We vary the percentage of adversarial clients from 10% to 100% and, simultaneously, the percentage of labels flipped by each adversarial client is also varied from 10% to 100%. Among other results, we find that models differ in their inherent robustness to the two vectors in our label-flipping attack, i.e., the percentage of adversarial clients, and the percentage of labels flipped by each adversarial client. We discuss the potential practical implications of our results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3149108748
source Publicly Available Content Database
subjects Artificial neural networks
Clients
Empirical analysis
Federated learning
Labels
Machine learning
Multilayer perceptrons
Recurrent neural networks
title An Empirical Analysis of Federated Learning Models Subject to Label-Flipping Adversarial Attack
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Empirical%20Analysis%20of%20Federated%20Learning%20Models%20Subject%20to%20Label-Flipping%20Adversarial%20Attack&rft.jtitle=arXiv.org&rft.au=Bhatnagar,%20Kunal&rft.date=2024-12-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3149108748%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31491087483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149108748&rft_id=info:pmid/&rfr_iscdi=true