Loading…

Binderless Polycrystalline Cubic Boron Nitride Sintered Compacts for Machining of Cemented Carbides

High-purity, superhard, binderless polycrystalline cubic boron nitride (BL-PCBN) was obtained by direct hBN to cBN transformation in a toroid-type high-pressure apparatus at a pressure of 8.0 GPa and temperature of 2250 °C (HPHT-DCS; high-pressure, high-temperature direct conversion sintering). X-ra...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics 2024-12, Vol.7 (4), p.1477-1487
Main Authors: Osipov, Alexander S., Klimczyk, Piotr, Petrusha, Igor A., Melniichuk, Yurii O., Jaworska, Lucyna, Momot, Kinga, Rumiantseva, Yuliia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-purity, superhard, binderless polycrystalline cubic boron nitride (BL-PCBN) was obtained by direct hBN to cBN transformation in a toroid-type high-pressure apparatus at a pressure of 8.0 GPa and temperature of 2250 °C (HPHT-DCS; high-pressure, high-temperature direct conversion sintering). X-ray diffraction analysis revealed a prominent [111] axial texture in the sintered material when the axis was oriented perpendicular to the end surface of the sample. Vickers hardness tests conducted at a load of 49 N showed that BL-PCBN possessed an exceptional hardness value of 63.4 GPa. Finally, cutting tools made of BL-PCBN and SN-PCBN (Si3N4-doped cBN-based composite) reference materials were tested during the turning of a cemented tungsten carbide workpiece. The results of the cutting tests demonstrated that the wear resistance of the BL-PCBN material obtained with the HPHT-DCS process is 1.5–1.9 times higher compared to the conventional SN-PCBN material, suggesting its significant potential for industrial application.
ISSN:2571-6131
2571-6131
DOI:10.3390/ceramics7040095