Loading…
Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis
A marble processing plant (MPP) can achieve sustainable development by implementing energy-saving and consumption-reduction technology. Reducing energy loss in such an energy-intensive plant is crucial for overall energy savings. This study establishes an MPP optimization model based on the second l...
Saved in:
Published in: | Sustainability 2024-12, Vol.16 (24), p.11233 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c222t-527c8ab054204b4d48fa510c9de90b0b1abf2eb40c836d384d034b6777bb5f693 |
container_end_page | |
container_issue | 24 |
container_start_page | 11233 |
container_title | Sustainability |
container_volume | 16 |
creator | Oweh, Samuel Oghale Aigba, Peter Alenoghena Samuel, Olusegun David Oyekale, Joseph Abam, Fidelis Ibiang Veza, Ibham Enweremadu, Christopher Chintua Der, Oguzhan Ercetin, Ali Sener, Ramazan |
description | A marble processing plant (MPP) can achieve sustainable development by implementing energy-saving and consumption-reduction technology. Reducing energy loss in such an energy-intensive plant is crucial for overall energy savings. This study establishes an MPP optimization model based on the second law of thermodynamics and the law of conservation of mass. Marble is an aesthetically pleasing and long-lasting building material that has boosted economies in European and sub-Saharan African nations. However, high energy costs and scarcity have constrained the industry’s economic potential and hindered the achievement of optimal levels of production. The second law of thermodynamics is adopted to study the irreversibilities, inefficiencies, and exergetic performance of a marble processing plant. The Aspen Plus commercial software application is used to model and generate thermodynamic data, determine energy flow streams and conduct sensitivity and optimization analysis to improve data quality and energetic performance outcomes. From the results, the various scales of the exergetic destruction, efficiencies, and exergetic losses are determined, and recommendations are established. The overall energy and exergy efficiency levels were determined to be 87.43% and 86.84%, respectively, with a total exergetic destruction of 200.61 kW. The reported methodologies, cutting-edge ideas, and solutions will give industrialists and other significant stakeholders in the global manufacturing sector cutting-edge information about energy usage and ways to cut energy losses in both new and existing factory designs, manage energy cost components, and adjust energy efficiency to maximize productivity. |
doi_str_mv | 10.3390/su162411233 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3149761395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821976857</galeid><sourcerecordid>A821976857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-527c8ab054204b4d48fa510c9de90b0b1abf2eb40c836d384d034b6777bb5f693</originalsourceid><addsrcrecordid>eNpVkU1PAjEQhhujiQQ5-Qc28WTMYr_260gIIglGo-i1abvdpWTZYtsl8O8t4AFmDjOZed7JTAaAewSHhBTw2XUoxRQhTMgV6GGYoRjBBF6f5bdg4NwKBiMEFSjtgZ_ZemPNVrd19GFN2Umvt9rvI-4jHr1xKxp1aEjl3JFpeOujxdKarl5Gk1bZOrBtGU12x3TU8mbvtLsDNxVvnBr8xz74fpksxq_x_H06G4_mscQY-zjBmcy5gAnFkApa0rziCYKyKFUBBRSIiworQaHMSVqSnJaQUJFmWSZEUqUF6YOH09xwxG-nnGcr09mwhGME0SJLESmSQA1PVM0bxXRbGW-5DF6qtZamVZUO9VGOUVDkSRYEjxeCwHi18zXvnGOzr89L9unESmucs6piG6vX3O4ZguzwGHb2GPIH05h-ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149761395</pqid></control><display><type>article</type><title>Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis</title><source>Publicly Available Content Database</source><creator>Oweh, Samuel Oghale ; Aigba, Peter Alenoghena ; Samuel, Olusegun David ; Oyekale, Joseph ; Abam, Fidelis Ibiang ; Veza, Ibham ; Enweremadu, Christopher Chintua ; Der, Oguzhan ; Ercetin, Ali ; Sener, Ramazan</creator><creatorcontrib>Oweh, Samuel Oghale ; Aigba, Peter Alenoghena ; Samuel, Olusegun David ; Oyekale, Joseph ; Abam, Fidelis Ibiang ; Veza, Ibham ; Enweremadu, Christopher Chintua ; Der, Oguzhan ; Ercetin, Ali ; Sener, Ramazan</creatorcontrib><description>A marble processing plant (MPP) can achieve sustainable development by implementing energy-saving and consumption-reduction technology. Reducing energy loss in such an energy-intensive plant is crucial for overall energy savings. This study establishes an MPP optimization model based on the second law of thermodynamics and the law of conservation of mass. Marble is an aesthetically pleasing and long-lasting building material that has boosted economies in European and sub-Saharan African nations. However, high energy costs and scarcity have constrained the industry’s economic potential and hindered the achievement of optimal levels of production. The second law of thermodynamics is adopted to study the irreversibilities, inefficiencies, and exergetic performance of a marble processing plant. The Aspen Plus commercial software application is used to model and generate thermodynamic data, determine energy flow streams and conduct sensitivity and optimization analysis to improve data quality and energetic performance outcomes. From the results, the various scales of the exergetic destruction, efficiencies, and exergetic losses are determined, and recommendations are established. The overall energy and exergy efficiency levels were determined to be 87.43% and 86.84%, respectively, with a total exergetic destruction of 200.61 kW. The reported methodologies, cutting-edge ideas, and solutions will give industrialists and other significant stakeholders in the global manufacturing sector cutting-edge information about energy usage and ways to cut energy losses in both new and existing factory designs, manage energy cost components, and adjust energy efficiency to maximize productivity.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su162411233</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cement industry ; Concrete ; Cost control ; Dust ; Emissions ; Energy conservation ; Energy consumption ; Energy efficiency ; Environmental impact ; Factories ; Force and energy ; Global economy ; Industrial plant emissions ; Manufacturing ; Manufacturing industry ; Marble ; Metamorphic rocks ; Nigeria ; Protection and preservation ; Thermodynamics ; United States</subject><ispartof>Sustainability, 2024-12, Vol.16 (24), p.11233</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-527c8ab054204b4d48fa510c9de90b0b1abf2eb40c836d384d034b6777bb5f693</cites><orcidid>0000-0002-1674-4798 ; 0000-0002-6625-2820 ; 0000-0001-6108-8673 ; 0000-0001-5679-2594 ; 0000-0002-9432-5943 ; 0000-0001-6794-0118 ; 0000-0002-5455-2500 ; 0000-0002-7631-1361 ; 0009-0008-5136-8792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149761395/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149761395?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Oweh, Samuel Oghale</creatorcontrib><creatorcontrib>Aigba, Peter Alenoghena</creatorcontrib><creatorcontrib>Samuel, Olusegun David</creatorcontrib><creatorcontrib>Oyekale, Joseph</creatorcontrib><creatorcontrib>Abam, Fidelis Ibiang</creatorcontrib><creatorcontrib>Veza, Ibham</creatorcontrib><creatorcontrib>Enweremadu, Christopher Chintua</creatorcontrib><creatorcontrib>Der, Oguzhan</creatorcontrib><creatorcontrib>Ercetin, Ali</creatorcontrib><creatorcontrib>Sener, Ramazan</creatorcontrib><title>Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis</title><title>Sustainability</title><description>A marble processing plant (MPP) can achieve sustainable development by implementing energy-saving and consumption-reduction technology. Reducing energy loss in such an energy-intensive plant is crucial for overall energy savings. This study establishes an MPP optimization model based on the second law of thermodynamics and the law of conservation of mass. Marble is an aesthetically pleasing and long-lasting building material that has boosted economies in European and sub-Saharan African nations. However, high energy costs and scarcity have constrained the industry’s economic potential and hindered the achievement of optimal levels of production. The second law of thermodynamics is adopted to study the irreversibilities, inefficiencies, and exergetic performance of a marble processing plant. The Aspen Plus commercial software application is used to model and generate thermodynamic data, determine energy flow streams and conduct sensitivity and optimization analysis to improve data quality and energetic performance outcomes. From the results, the various scales of the exergetic destruction, efficiencies, and exergetic losses are determined, and recommendations are established. The overall energy and exergy efficiency levels were determined to be 87.43% and 86.84%, respectively, with a total exergetic destruction of 200.61 kW. The reported methodologies, cutting-edge ideas, and solutions will give industrialists and other significant stakeholders in the global manufacturing sector cutting-edge information about energy usage and ways to cut energy losses in both new and existing factory designs, manage energy cost components, and adjust energy efficiency to maximize productivity.</description><subject>Cement industry</subject><subject>Concrete</subject><subject>Cost control</subject><subject>Dust</subject><subject>Emissions</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Environmental impact</subject><subject>Factories</subject><subject>Force and energy</subject><subject>Global economy</subject><subject>Industrial plant emissions</subject><subject>Manufacturing</subject><subject>Manufacturing industry</subject><subject>Marble</subject><subject>Metamorphic rocks</subject><subject>Nigeria</subject><subject>Protection and preservation</subject><subject>Thermodynamics</subject><subject>United States</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkU1PAjEQhhujiQQ5-Qc28WTMYr_260gIIglGo-i1abvdpWTZYtsl8O8t4AFmDjOZed7JTAaAewSHhBTw2XUoxRQhTMgV6GGYoRjBBF6f5bdg4NwKBiMEFSjtgZ_ZemPNVrd19GFN2Umvt9rvI-4jHr1xKxp1aEjl3JFpeOujxdKarl5Gk1bZOrBtGU12x3TU8mbvtLsDNxVvnBr8xz74fpksxq_x_H06G4_mscQY-zjBmcy5gAnFkApa0rziCYKyKFUBBRSIiworQaHMSVqSnJaQUJFmWSZEUqUF6YOH09xwxG-nnGcr09mwhGME0SJLESmSQA1PVM0bxXRbGW-5DF6qtZamVZUO9VGOUVDkSRYEjxeCwHi18zXvnGOzr89L9unESmucs6piG6vX3O4ZguzwGHb2GPIH05h-ZQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Oweh, Samuel Oghale</creator><creator>Aigba, Peter Alenoghena</creator><creator>Samuel, Olusegun David</creator><creator>Oyekale, Joseph</creator><creator>Abam, Fidelis Ibiang</creator><creator>Veza, Ibham</creator><creator>Enweremadu, Christopher Chintua</creator><creator>Der, Oguzhan</creator><creator>Ercetin, Ali</creator><creator>Sener, Ramazan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1674-4798</orcidid><orcidid>https://orcid.org/0000-0002-6625-2820</orcidid><orcidid>https://orcid.org/0000-0001-6108-8673</orcidid><orcidid>https://orcid.org/0000-0001-5679-2594</orcidid><orcidid>https://orcid.org/0000-0002-9432-5943</orcidid><orcidid>https://orcid.org/0000-0001-6794-0118</orcidid><orcidid>https://orcid.org/0000-0002-5455-2500</orcidid><orcidid>https://orcid.org/0000-0002-7631-1361</orcidid><orcidid>https://orcid.org/0009-0008-5136-8792</orcidid></search><sort><creationdate>20241201</creationdate><title>Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis</title><author>Oweh, Samuel Oghale ; Aigba, Peter Alenoghena ; Samuel, Olusegun David ; Oyekale, Joseph ; Abam, Fidelis Ibiang ; Veza, Ibham ; Enweremadu, Christopher Chintua ; Der, Oguzhan ; Ercetin, Ali ; Sener, Ramazan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-527c8ab054204b4d48fa510c9de90b0b1abf2eb40c836d384d034b6777bb5f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cement industry</topic><topic>Concrete</topic><topic>Cost control</topic><topic>Dust</topic><topic>Emissions</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Environmental impact</topic><topic>Factories</topic><topic>Force and energy</topic><topic>Global economy</topic><topic>Industrial plant emissions</topic><topic>Manufacturing</topic><topic>Manufacturing industry</topic><topic>Marble</topic><topic>Metamorphic rocks</topic><topic>Nigeria</topic><topic>Protection and preservation</topic><topic>Thermodynamics</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oweh, Samuel Oghale</creatorcontrib><creatorcontrib>Aigba, Peter Alenoghena</creatorcontrib><creatorcontrib>Samuel, Olusegun David</creatorcontrib><creatorcontrib>Oyekale, Joseph</creatorcontrib><creatorcontrib>Abam, Fidelis Ibiang</creatorcontrib><creatorcontrib>Veza, Ibham</creatorcontrib><creatorcontrib>Enweremadu, Christopher Chintua</creatorcontrib><creatorcontrib>Der, Oguzhan</creatorcontrib><creatorcontrib>Ercetin, Ali</creatorcontrib><creatorcontrib>Sener, Ramazan</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oweh, Samuel Oghale</au><au>Aigba, Peter Alenoghena</au><au>Samuel, Olusegun David</au><au>Oyekale, Joseph</au><au>Abam, Fidelis Ibiang</au><au>Veza, Ibham</au><au>Enweremadu, Christopher Chintua</au><au>Der, Oguzhan</au><au>Ercetin, Ali</au><au>Sener, Ramazan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis</atitle><jtitle>Sustainability</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>24</issue><spage>11233</spage><pages>11233-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>A marble processing plant (MPP) can achieve sustainable development by implementing energy-saving and consumption-reduction technology. Reducing energy loss in such an energy-intensive plant is crucial for overall energy savings. This study establishes an MPP optimization model based on the second law of thermodynamics and the law of conservation of mass. Marble is an aesthetically pleasing and long-lasting building material that has boosted economies in European and sub-Saharan African nations. However, high energy costs and scarcity have constrained the industry’s economic potential and hindered the achievement of optimal levels of production. The second law of thermodynamics is adopted to study the irreversibilities, inefficiencies, and exergetic performance of a marble processing plant. The Aspen Plus commercial software application is used to model and generate thermodynamic data, determine energy flow streams and conduct sensitivity and optimization analysis to improve data quality and energetic performance outcomes. From the results, the various scales of the exergetic destruction, efficiencies, and exergetic losses are determined, and recommendations are established. The overall energy and exergy efficiency levels were determined to be 87.43% and 86.84%, respectively, with a total exergetic destruction of 200.61 kW. The reported methodologies, cutting-edge ideas, and solutions will give industrialists and other significant stakeholders in the global manufacturing sector cutting-edge information about energy usage and ways to cut energy losses in both new and existing factory designs, manage energy cost components, and adjust energy efficiency to maximize productivity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su162411233</doi><orcidid>https://orcid.org/0000-0002-1674-4798</orcidid><orcidid>https://orcid.org/0000-0002-6625-2820</orcidid><orcidid>https://orcid.org/0000-0001-6108-8673</orcidid><orcidid>https://orcid.org/0000-0001-5679-2594</orcidid><orcidid>https://orcid.org/0000-0002-9432-5943</orcidid><orcidid>https://orcid.org/0000-0001-6794-0118</orcidid><orcidid>https://orcid.org/0000-0002-5455-2500</orcidid><orcidid>https://orcid.org/0000-0002-7631-1361</orcidid><orcidid>https://orcid.org/0009-0008-5136-8792</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-12, Vol.16 (24), p.11233 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3149761395 |
source | Publicly Available Content Database |
subjects | Cement industry Concrete Cost control Dust Emissions Energy conservation Energy consumption Energy efficiency Environmental impact Factories Force and energy Global economy Industrial plant emissions Manufacturing Manufacturing industry Marble Metamorphic rocks Nigeria Protection and preservation Thermodynamics United States |
title | Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Productivity%20at%20a%20Marble%20Processing%20Plant%20Through%20Energy%20and%20Exergy%20Analysis&rft.jtitle=Sustainability&rft.au=Oweh,%20Samuel%20Oghale&rft.date=2024-12-01&rft.volume=16&rft.issue=24&rft.spage=11233&rft.pages=11233-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su162411233&rft_dat=%3Cgale_proqu%3EA821976857%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-527c8ab054204b4d48fa510c9de90b0b1abf2eb40c836d384d034b6777bb5f693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149761395&rft_id=info:pmid/&rft_galeid=A821976857&rfr_iscdi=true |