Loading…

Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis

A marble processing plant (MPP) can achieve sustainable development by implementing energy-saving and consumption-reduction technology. Reducing energy loss in such an energy-intensive plant is crucial for overall energy savings. This study establishes an MPP optimization model based on the second l...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-12, Vol.16 (24), p.11233
Main Authors: Oweh, Samuel Oghale, Aigba, Peter Alenoghena, Samuel, Olusegun David, Oyekale, Joseph, Abam, Fidelis Ibiang, Veza, Ibham, Enweremadu, Christopher Chintua, Der, Oguzhan, Ercetin, Ali, Sener, Ramazan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c222t-527c8ab054204b4d48fa510c9de90b0b1abf2eb40c836d384d034b6777bb5f693
container_end_page
container_issue 24
container_start_page 11233
container_title Sustainability
container_volume 16
creator Oweh, Samuel Oghale
Aigba, Peter Alenoghena
Samuel, Olusegun David
Oyekale, Joseph
Abam, Fidelis Ibiang
Veza, Ibham
Enweremadu, Christopher Chintua
Der, Oguzhan
Ercetin, Ali
Sener, Ramazan
description A marble processing plant (MPP) can achieve sustainable development by implementing energy-saving and consumption-reduction technology. Reducing energy loss in such an energy-intensive plant is crucial for overall energy savings. This study establishes an MPP optimization model based on the second law of thermodynamics and the law of conservation of mass. Marble is an aesthetically pleasing and long-lasting building material that has boosted economies in European and sub-Saharan African nations. However, high energy costs and scarcity have constrained the industry’s economic potential and hindered the achievement of optimal levels of production. The second law of thermodynamics is adopted to study the irreversibilities, inefficiencies, and exergetic performance of a marble processing plant. The Aspen Plus commercial software application is used to model and generate thermodynamic data, determine energy flow streams and conduct sensitivity and optimization analysis to improve data quality and energetic performance outcomes. From the results, the various scales of the exergetic destruction, efficiencies, and exergetic losses are determined, and recommendations are established. The overall energy and exergy efficiency levels were determined to be 87.43% and 86.84%, respectively, with a total exergetic destruction of 200.61 kW. The reported methodologies, cutting-edge ideas, and solutions will give industrialists and other significant stakeholders in the global manufacturing sector cutting-edge information about energy usage and ways to cut energy losses in both new and existing factory designs, manage energy cost components, and adjust energy efficiency to maximize productivity.
doi_str_mv 10.3390/su162411233
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3149761395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821976857</galeid><sourcerecordid>A821976857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-527c8ab054204b4d48fa510c9de90b0b1abf2eb40c836d384d034b6777bb5f693</originalsourceid><addsrcrecordid>eNpVkU1PAjEQhhujiQQ5-Qc28WTMYr_260gIIglGo-i1abvdpWTZYtsl8O8t4AFmDjOZed7JTAaAewSHhBTw2XUoxRQhTMgV6GGYoRjBBF6f5bdg4NwKBiMEFSjtgZ_ZemPNVrd19GFN2Umvt9rvI-4jHr1xKxp1aEjl3JFpeOujxdKarl5Gk1bZOrBtGU12x3TU8mbvtLsDNxVvnBr8xz74fpksxq_x_H06G4_mscQY-zjBmcy5gAnFkApa0rziCYKyKFUBBRSIiworQaHMSVqSnJaQUJFmWSZEUqUF6YOH09xwxG-nnGcr09mwhGME0SJLESmSQA1PVM0bxXRbGW-5DF6qtZamVZUO9VGOUVDkSRYEjxeCwHi18zXvnGOzr89L9unESmucs6piG6vX3O4ZguzwGHb2GPIH05h-ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149761395</pqid></control><display><type>article</type><title>Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis</title><source>Publicly Available Content Database</source><creator>Oweh, Samuel Oghale ; Aigba, Peter Alenoghena ; Samuel, Olusegun David ; Oyekale, Joseph ; Abam, Fidelis Ibiang ; Veza, Ibham ; Enweremadu, Christopher Chintua ; Der, Oguzhan ; Ercetin, Ali ; Sener, Ramazan</creator><creatorcontrib>Oweh, Samuel Oghale ; Aigba, Peter Alenoghena ; Samuel, Olusegun David ; Oyekale, Joseph ; Abam, Fidelis Ibiang ; Veza, Ibham ; Enweremadu, Christopher Chintua ; Der, Oguzhan ; Ercetin, Ali ; Sener, Ramazan</creatorcontrib><description>A marble processing plant (MPP) can achieve sustainable development by implementing energy-saving and consumption-reduction technology. Reducing energy loss in such an energy-intensive plant is crucial for overall energy savings. This study establishes an MPP optimization model based on the second law of thermodynamics and the law of conservation of mass. Marble is an aesthetically pleasing and long-lasting building material that has boosted economies in European and sub-Saharan African nations. However, high energy costs and scarcity have constrained the industry’s economic potential and hindered the achievement of optimal levels of production. The second law of thermodynamics is adopted to study the irreversibilities, inefficiencies, and exergetic performance of a marble processing plant. The Aspen Plus commercial software application is used to model and generate thermodynamic data, determine energy flow streams and conduct sensitivity and optimization analysis to improve data quality and energetic performance outcomes. From the results, the various scales of the exergetic destruction, efficiencies, and exergetic losses are determined, and recommendations are established. The overall energy and exergy efficiency levels were determined to be 87.43% and 86.84%, respectively, with a total exergetic destruction of 200.61 kW. The reported methodologies, cutting-edge ideas, and solutions will give industrialists and other significant stakeholders in the global manufacturing sector cutting-edge information about energy usage and ways to cut energy losses in both new and existing factory designs, manage energy cost components, and adjust energy efficiency to maximize productivity.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su162411233</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cement industry ; Concrete ; Cost control ; Dust ; Emissions ; Energy conservation ; Energy consumption ; Energy efficiency ; Environmental impact ; Factories ; Force and energy ; Global economy ; Industrial plant emissions ; Manufacturing ; Manufacturing industry ; Marble ; Metamorphic rocks ; Nigeria ; Protection and preservation ; Thermodynamics ; United States</subject><ispartof>Sustainability, 2024-12, Vol.16 (24), p.11233</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-527c8ab054204b4d48fa510c9de90b0b1abf2eb40c836d384d034b6777bb5f693</cites><orcidid>0000-0002-1674-4798 ; 0000-0002-6625-2820 ; 0000-0001-6108-8673 ; 0000-0001-5679-2594 ; 0000-0002-9432-5943 ; 0000-0001-6794-0118 ; 0000-0002-5455-2500 ; 0000-0002-7631-1361 ; 0009-0008-5136-8792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149761395/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149761395?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Oweh, Samuel Oghale</creatorcontrib><creatorcontrib>Aigba, Peter Alenoghena</creatorcontrib><creatorcontrib>Samuel, Olusegun David</creatorcontrib><creatorcontrib>Oyekale, Joseph</creatorcontrib><creatorcontrib>Abam, Fidelis Ibiang</creatorcontrib><creatorcontrib>Veza, Ibham</creatorcontrib><creatorcontrib>Enweremadu, Christopher Chintua</creatorcontrib><creatorcontrib>Der, Oguzhan</creatorcontrib><creatorcontrib>Ercetin, Ali</creatorcontrib><creatorcontrib>Sener, Ramazan</creatorcontrib><title>Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis</title><title>Sustainability</title><description>A marble processing plant (MPP) can achieve sustainable development by implementing energy-saving and consumption-reduction technology. Reducing energy loss in such an energy-intensive plant is crucial for overall energy savings. This study establishes an MPP optimization model based on the second law of thermodynamics and the law of conservation of mass. Marble is an aesthetically pleasing and long-lasting building material that has boosted economies in European and sub-Saharan African nations. However, high energy costs and scarcity have constrained the industry’s economic potential and hindered the achievement of optimal levels of production. The second law of thermodynamics is adopted to study the irreversibilities, inefficiencies, and exergetic performance of a marble processing plant. The Aspen Plus commercial software application is used to model and generate thermodynamic data, determine energy flow streams and conduct sensitivity and optimization analysis to improve data quality and energetic performance outcomes. From the results, the various scales of the exergetic destruction, efficiencies, and exergetic losses are determined, and recommendations are established. The overall energy and exergy efficiency levels were determined to be 87.43% and 86.84%, respectively, with a total exergetic destruction of 200.61 kW. The reported methodologies, cutting-edge ideas, and solutions will give industrialists and other significant stakeholders in the global manufacturing sector cutting-edge information about energy usage and ways to cut energy losses in both new and existing factory designs, manage energy cost components, and adjust energy efficiency to maximize productivity.</description><subject>Cement industry</subject><subject>Concrete</subject><subject>Cost control</subject><subject>Dust</subject><subject>Emissions</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Environmental impact</subject><subject>Factories</subject><subject>Force and energy</subject><subject>Global economy</subject><subject>Industrial plant emissions</subject><subject>Manufacturing</subject><subject>Manufacturing industry</subject><subject>Marble</subject><subject>Metamorphic rocks</subject><subject>Nigeria</subject><subject>Protection and preservation</subject><subject>Thermodynamics</subject><subject>United States</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkU1PAjEQhhujiQQ5-Qc28WTMYr_260gIIglGo-i1abvdpWTZYtsl8O8t4AFmDjOZed7JTAaAewSHhBTw2XUoxRQhTMgV6GGYoRjBBF6f5bdg4NwKBiMEFSjtgZ_ZemPNVrd19GFN2Umvt9rvI-4jHr1xKxp1aEjl3JFpeOujxdKarl5Gk1bZOrBtGU12x3TU8mbvtLsDNxVvnBr8xz74fpksxq_x_H06G4_mscQY-zjBmcy5gAnFkApa0rziCYKyKFUBBRSIiworQaHMSVqSnJaQUJFmWSZEUqUF6YOH09xwxG-nnGcr09mwhGME0SJLESmSQA1PVM0bxXRbGW-5DF6qtZamVZUO9VGOUVDkSRYEjxeCwHi18zXvnGOzr89L9unESmucs6piG6vX3O4ZguzwGHb2GPIH05h-ZQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Oweh, Samuel Oghale</creator><creator>Aigba, Peter Alenoghena</creator><creator>Samuel, Olusegun David</creator><creator>Oyekale, Joseph</creator><creator>Abam, Fidelis Ibiang</creator><creator>Veza, Ibham</creator><creator>Enweremadu, Christopher Chintua</creator><creator>Der, Oguzhan</creator><creator>Ercetin, Ali</creator><creator>Sener, Ramazan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1674-4798</orcidid><orcidid>https://orcid.org/0000-0002-6625-2820</orcidid><orcidid>https://orcid.org/0000-0001-6108-8673</orcidid><orcidid>https://orcid.org/0000-0001-5679-2594</orcidid><orcidid>https://orcid.org/0000-0002-9432-5943</orcidid><orcidid>https://orcid.org/0000-0001-6794-0118</orcidid><orcidid>https://orcid.org/0000-0002-5455-2500</orcidid><orcidid>https://orcid.org/0000-0002-7631-1361</orcidid><orcidid>https://orcid.org/0009-0008-5136-8792</orcidid></search><sort><creationdate>20241201</creationdate><title>Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis</title><author>Oweh, Samuel Oghale ; Aigba, Peter Alenoghena ; Samuel, Olusegun David ; Oyekale, Joseph ; Abam, Fidelis Ibiang ; Veza, Ibham ; Enweremadu, Christopher Chintua ; Der, Oguzhan ; Ercetin, Ali ; Sener, Ramazan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-527c8ab054204b4d48fa510c9de90b0b1abf2eb40c836d384d034b6777bb5f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cement industry</topic><topic>Concrete</topic><topic>Cost control</topic><topic>Dust</topic><topic>Emissions</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Environmental impact</topic><topic>Factories</topic><topic>Force and energy</topic><topic>Global economy</topic><topic>Industrial plant emissions</topic><topic>Manufacturing</topic><topic>Manufacturing industry</topic><topic>Marble</topic><topic>Metamorphic rocks</topic><topic>Nigeria</topic><topic>Protection and preservation</topic><topic>Thermodynamics</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oweh, Samuel Oghale</creatorcontrib><creatorcontrib>Aigba, Peter Alenoghena</creatorcontrib><creatorcontrib>Samuel, Olusegun David</creatorcontrib><creatorcontrib>Oyekale, Joseph</creatorcontrib><creatorcontrib>Abam, Fidelis Ibiang</creatorcontrib><creatorcontrib>Veza, Ibham</creatorcontrib><creatorcontrib>Enweremadu, Christopher Chintua</creatorcontrib><creatorcontrib>Der, Oguzhan</creatorcontrib><creatorcontrib>Ercetin, Ali</creatorcontrib><creatorcontrib>Sener, Ramazan</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oweh, Samuel Oghale</au><au>Aigba, Peter Alenoghena</au><au>Samuel, Olusegun David</au><au>Oyekale, Joseph</au><au>Abam, Fidelis Ibiang</au><au>Veza, Ibham</au><au>Enweremadu, Christopher Chintua</au><au>Der, Oguzhan</au><au>Ercetin, Ali</au><au>Sener, Ramazan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis</atitle><jtitle>Sustainability</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>24</issue><spage>11233</spage><pages>11233-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>A marble processing plant (MPP) can achieve sustainable development by implementing energy-saving and consumption-reduction technology. Reducing energy loss in such an energy-intensive plant is crucial for overall energy savings. This study establishes an MPP optimization model based on the second law of thermodynamics and the law of conservation of mass. Marble is an aesthetically pleasing and long-lasting building material that has boosted economies in European and sub-Saharan African nations. However, high energy costs and scarcity have constrained the industry’s economic potential and hindered the achievement of optimal levels of production. The second law of thermodynamics is adopted to study the irreversibilities, inefficiencies, and exergetic performance of a marble processing plant. The Aspen Plus commercial software application is used to model and generate thermodynamic data, determine energy flow streams and conduct sensitivity and optimization analysis to improve data quality and energetic performance outcomes. From the results, the various scales of the exergetic destruction, efficiencies, and exergetic losses are determined, and recommendations are established. The overall energy and exergy efficiency levels were determined to be 87.43% and 86.84%, respectively, with a total exergetic destruction of 200.61 kW. The reported methodologies, cutting-edge ideas, and solutions will give industrialists and other significant stakeholders in the global manufacturing sector cutting-edge information about energy usage and ways to cut energy losses in both new and existing factory designs, manage energy cost components, and adjust energy efficiency to maximize productivity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su162411233</doi><orcidid>https://orcid.org/0000-0002-1674-4798</orcidid><orcidid>https://orcid.org/0000-0002-6625-2820</orcidid><orcidid>https://orcid.org/0000-0001-6108-8673</orcidid><orcidid>https://orcid.org/0000-0001-5679-2594</orcidid><orcidid>https://orcid.org/0000-0002-9432-5943</orcidid><orcidid>https://orcid.org/0000-0001-6794-0118</orcidid><orcidid>https://orcid.org/0000-0002-5455-2500</orcidid><orcidid>https://orcid.org/0000-0002-7631-1361</orcidid><orcidid>https://orcid.org/0009-0008-5136-8792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-12, Vol.16 (24), p.11233
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3149761395
source Publicly Available Content Database
subjects Cement industry
Concrete
Cost control
Dust
Emissions
Energy conservation
Energy consumption
Energy efficiency
Environmental impact
Factories
Force and energy
Global economy
Industrial plant emissions
Manufacturing
Manufacturing industry
Marble
Metamorphic rocks
Nigeria
Protection and preservation
Thermodynamics
United States
title Improving Productivity at a Marble Processing Plant Through Energy and Exergy Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Productivity%20at%20a%20Marble%20Processing%20Plant%20Through%20Energy%20and%20Exergy%20Analysis&rft.jtitle=Sustainability&rft.au=Oweh,%20Samuel%20Oghale&rft.date=2024-12-01&rft.volume=16&rft.issue=24&rft.spage=11233&rft.pages=11233-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su162411233&rft_dat=%3Cgale_proqu%3EA821976857%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-527c8ab054204b4d48fa510c9de90b0b1abf2eb40c836d384d034b6777bb5f693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149761395&rft_id=info:pmid/&rft_galeid=A821976857&rfr_iscdi=true