Loading…
Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points
Predicting suspended sediment concentration (SSC) profiles with high accuracy remains a critical challenge for environmental and engineering applications. This study presents a novel, data-driven expert system that leverages a knowledge-based framework to select optimal SSC models based on diverse f...
Saved in:
Published in: | Water (Basel) 2024-12, Vol.16 (24), p.3575 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c221t-6ceb086f5da082986362c99ef582deee0804699f69347df0e6e03fa80a4d89fc3 |
container_end_page | |
container_issue | 24 |
container_start_page | 3575 |
container_title | Water (Basel) |
container_volume | 16 |
creator | Sabat, Mira Terfous, Abdelali Ghenaim, Abdellah Sabat, Macole Draybi, Michel Romanos, Jimmy |
description | Predicting suspended sediment concentration (SSC) profiles with high accuracy remains a critical challenge for environmental and engineering applications. This study presents a novel, data-driven expert system that leverages a knowledge-based framework to select optimal SSC models based on diverse flow conditions. The system utilizes model function ranges and spatial relationships between data points as key decision factors. This methodology is applied to study vertical velocity profiles and SSC distribution in steady and uniform river flows. The system systematically extracts and categorizes influencing parameters, generating weighted averages to interpolate and extrapolate profiles where single models exhibit limitations. Two weight calculation methods are implemented: (1) a spatial conditional probability approach utilizing a uniform distribution within control cells, and (2) an isolated point analysis based on distances to cell centers. This approach exhibits some similarities to Voronoi tessellations and associated Laplace and Sibson weights, offering a robust and innovative method for SSC modeling. The proposed expert system empowers hydrologists and engineers by selecting and applying the most suitable SSC models for different scenarios, leading to enhanced prediction accuracy and reliability. This work represents a significant advancement in the field of sediment transport modeling, providing a valuable tool for improved water resource management and environmental protection. |
doi_str_mv | 10.3390/w16243575 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3149767315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821984966</galeid><sourcerecordid>A821984966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-6ceb086f5da082986362c99ef582deee0804699f69347df0e6e03fa80a4d89fc3</originalsourceid><addsrcrecordid>eNpNUF1LwzAULaLg0D34DwI--bCZJmma-DbG1MF0g-pzyZqbmdE2Ncmc89dbmYj3PNzL5XzASZKrFI8plfh2n3LCaJZnJ8mA4JyOGGPp6b_7PBmGsMX9MClEhgfJdtlF29gv225QsQsdtBo0KkDbBtqInpyGOtyhCXp2H1Cj2WcHPqLiECI0aG_jGyo6Fa2q0cq7tVrb2kYLAalWo3lwtYq93crZNobL5MyoOsDwd18kr_ezl-njaLF8mE8ni1FFSBpHvII1FtxkWmFBpOCUk0pKMJkgGgCwwIxLabikLNcGAwdMjRJYMS2kqehFcn307bx730GI5dbtfNtHljRlMuc5TbOeNT6yNqqG0rbGRa-qHhoaW7kWjO3_E0FSKZjkvBfcHAWVdyF4MGXnbaP8oUxx-VN_-Vc__Qb6zncS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149767315</pqid></control><display><type>article</type><title>Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points</title><source>Publicly Available Content Database</source><creator>Sabat, Mira ; Terfous, Abdelali ; Ghenaim, Abdellah ; Sabat, Macole ; Draybi, Michel ; Romanos, Jimmy</creator><creatorcontrib>Sabat, Mira ; Terfous, Abdelali ; Ghenaim, Abdellah ; Sabat, Macole ; Draybi, Michel ; Romanos, Jimmy</creatorcontrib><description>Predicting suspended sediment concentration (SSC) profiles with high accuracy remains a critical challenge for environmental and engineering applications. This study presents a novel, data-driven expert system that leverages a knowledge-based framework to select optimal SSC models based on diverse flow conditions. The system utilizes model function ranges and spatial relationships between data points as key decision factors. This methodology is applied to study vertical velocity profiles and SSC distribution in steady and uniform river flows. The system systematically extracts and categorizes influencing parameters, generating weighted averages to interpolate and extrapolate profiles where single models exhibit limitations. Two weight calculation methods are implemented: (1) a spatial conditional probability approach utilizing a uniform distribution within control cells, and (2) an isolated point analysis based on distances to cell centers. This approach exhibits some similarities to Voronoi tessellations and associated Laplace and Sibson weights, offering a robust and innovative method for SSC modeling. The proposed expert system empowers hydrologists and engineers by selecting and applying the most suitable SSC models for different scenarios, leading to enhanced prediction accuracy and reliability. This work represents a significant advancement in the field of sediment transport modeling, providing a valuable tool for improved water resource management and environmental protection.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16243575</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Environmental engineering ; Finite volume method ; Management ; Neural networks ; Sediment transport ; Sediment, Suspended ; Velocity ; Water ; Water quality</subject><ispartof>Water (Basel), 2024-12, Vol.16 (24), p.3575</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-6ceb086f5da082986362c99ef582deee0804699f69347df0e6e03fa80a4d89fc3</cites><orcidid>0000-0002-5408-1657 ; 0000-0002-6148-9335 ; 0000-0001-9425-8413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149767315/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149767315?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Sabat, Mira</creatorcontrib><creatorcontrib>Terfous, Abdelali</creatorcontrib><creatorcontrib>Ghenaim, Abdellah</creatorcontrib><creatorcontrib>Sabat, Macole</creatorcontrib><creatorcontrib>Draybi, Michel</creatorcontrib><creatorcontrib>Romanos, Jimmy</creatorcontrib><title>Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points</title><title>Water (Basel)</title><description>Predicting suspended sediment concentration (SSC) profiles with high accuracy remains a critical challenge for environmental and engineering applications. This study presents a novel, data-driven expert system that leverages a knowledge-based framework to select optimal SSC models based on diverse flow conditions. The system utilizes model function ranges and spatial relationships between data points as key decision factors. This methodology is applied to study vertical velocity profiles and SSC distribution in steady and uniform river flows. The system systematically extracts and categorizes influencing parameters, generating weighted averages to interpolate and extrapolate profiles where single models exhibit limitations. Two weight calculation methods are implemented: (1) a spatial conditional probability approach utilizing a uniform distribution within control cells, and (2) an isolated point analysis based on distances to cell centers. This approach exhibits some similarities to Voronoi tessellations and associated Laplace and Sibson weights, offering a robust and innovative method for SSC modeling. The proposed expert system empowers hydrologists and engineers by selecting and applying the most suitable SSC models for different scenarios, leading to enhanced prediction accuracy and reliability. This work represents a significant advancement in the field of sediment transport modeling, providing a valuable tool for improved water resource management and environmental protection.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Environmental engineering</subject><subject>Finite volume method</subject><subject>Management</subject><subject>Neural networks</subject><subject>Sediment transport</subject><subject>Sediment, Suspended</subject><subject>Velocity</subject><subject>Water</subject><subject>Water quality</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUF1LwzAULaLg0D34DwI--bCZJmma-DbG1MF0g-pzyZqbmdE2Ncmc89dbmYj3PNzL5XzASZKrFI8plfh2n3LCaJZnJ8mA4JyOGGPp6b_7PBmGsMX9MClEhgfJdtlF29gv225QsQsdtBo0KkDbBtqInpyGOtyhCXp2H1Cj2WcHPqLiECI0aG_jGyo6Fa2q0cq7tVrb2kYLAalWo3lwtYq93crZNobL5MyoOsDwd18kr_ezl-njaLF8mE8ni1FFSBpHvII1FtxkWmFBpOCUk0pKMJkgGgCwwIxLabikLNcGAwdMjRJYMS2kqehFcn307bx730GI5dbtfNtHljRlMuc5TbOeNT6yNqqG0rbGRa-qHhoaW7kWjO3_E0FSKZjkvBfcHAWVdyF4MGXnbaP8oUxx-VN_-Vc__Qb6zncS</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Sabat, Mira</creator><creator>Terfous, Abdelali</creator><creator>Ghenaim, Abdellah</creator><creator>Sabat, Macole</creator><creator>Draybi, Michel</creator><creator>Romanos, Jimmy</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5408-1657</orcidid><orcidid>https://orcid.org/0000-0002-6148-9335</orcidid><orcidid>https://orcid.org/0000-0001-9425-8413</orcidid></search><sort><creationdate>20241201</creationdate><title>Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points</title><author>Sabat, Mira ; Terfous, Abdelali ; Ghenaim, Abdellah ; Sabat, Macole ; Draybi, Michel ; Romanos, Jimmy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-6ceb086f5da082986362c99ef582deee0804699f69347df0e6e03fa80a4d89fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Environmental engineering</topic><topic>Finite volume method</topic><topic>Management</topic><topic>Neural networks</topic><topic>Sediment transport</topic><topic>Sediment, Suspended</topic><topic>Velocity</topic><topic>Water</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabat, Mira</creatorcontrib><creatorcontrib>Terfous, Abdelali</creatorcontrib><creatorcontrib>Ghenaim, Abdellah</creatorcontrib><creatorcontrib>Sabat, Macole</creatorcontrib><creatorcontrib>Draybi, Michel</creatorcontrib><creatorcontrib>Romanos, Jimmy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabat, Mira</au><au>Terfous, Abdelali</au><au>Ghenaim, Abdellah</au><au>Sabat, Macole</au><au>Draybi, Michel</au><au>Romanos, Jimmy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points</atitle><jtitle>Water (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>24</issue><spage>3575</spage><pages>3575-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Predicting suspended sediment concentration (SSC) profiles with high accuracy remains a critical challenge for environmental and engineering applications. This study presents a novel, data-driven expert system that leverages a knowledge-based framework to select optimal SSC models based on diverse flow conditions. The system utilizes model function ranges and spatial relationships between data points as key decision factors. This methodology is applied to study vertical velocity profiles and SSC distribution in steady and uniform river flows. The system systematically extracts and categorizes influencing parameters, generating weighted averages to interpolate and extrapolate profiles where single models exhibit limitations. Two weight calculation methods are implemented: (1) a spatial conditional probability approach utilizing a uniform distribution within control cells, and (2) an isolated point analysis based on distances to cell centers. This approach exhibits some similarities to Voronoi tessellations and associated Laplace and Sibson weights, offering a robust and innovative method for SSC modeling. The proposed expert system empowers hydrologists and engineers by selecting and applying the most suitable SSC models for different scenarios, leading to enhanced prediction accuracy and reliability. This work represents a significant advancement in the field of sediment transport modeling, providing a valuable tool for improved water resource management and environmental protection.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16243575</doi><orcidid>https://orcid.org/0000-0002-5408-1657</orcidid><orcidid>https://orcid.org/0000-0002-6148-9335</orcidid><orcidid>https://orcid.org/0000-0001-9425-8413</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2024-12, Vol.16 (24), p.3575 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_3149767315 |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Environmental engineering Finite volume method Management Neural networks Sediment transport Sediment, Suspended Velocity Water Water quality |
title | Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Suspended%20Sediment%20Models:%20A%20Novel%20Expert%20System%20with%20Spatial%20Probabilities%20and%20Isolated%20Points&rft.jtitle=Water%20(Basel)&rft.au=Sabat,%20Mira&rft.date=2024-12-01&rft.volume=16&rft.issue=24&rft.spage=3575&rft.pages=3575-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16243575&rft_dat=%3Cgale_proqu%3EA821984966%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-6ceb086f5da082986362c99ef582deee0804699f69347df0e6e03fa80a4d89fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149767315&rft_id=info:pmid/&rft_galeid=A821984966&rfr_iscdi=true |