Loading…

Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points

Predicting suspended sediment concentration (SSC) profiles with high accuracy remains a critical challenge for environmental and engineering applications. This study presents a novel, data-driven expert system that leverages a knowledge-based framework to select optimal SSC models based on diverse f...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2024-12, Vol.16 (24), p.3575
Main Authors: Sabat, Mira, Terfous, Abdelali, Ghenaim, Abdellah, Sabat, Macole, Draybi, Michel, Romanos, Jimmy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c221t-6ceb086f5da082986362c99ef582deee0804699f69347df0e6e03fa80a4d89fc3
container_end_page
container_issue 24
container_start_page 3575
container_title Water (Basel)
container_volume 16
creator Sabat, Mira
Terfous, Abdelali
Ghenaim, Abdellah
Sabat, Macole
Draybi, Michel
Romanos, Jimmy
description Predicting suspended sediment concentration (SSC) profiles with high accuracy remains a critical challenge for environmental and engineering applications. This study presents a novel, data-driven expert system that leverages a knowledge-based framework to select optimal SSC models based on diverse flow conditions. The system utilizes model function ranges and spatial relationships between data points as key decision factors. This methodology is applied to study vertical velocity profiles and SSC distribution in steady and uniform river flows. The system systematically extracts and categorizes influencing parameters, generating weighted averages to interpolate and extrapolate profiles where single models exhibit limitations. Two weight calculation methods are implemented: (1) a spatial conditional probability approach utilizing a uniform distribution within control cells, and (2) an isolated point analysis based on distances to cell centers. This approach exhibits some similarities to Voronoi tessellations and associated Laplace and Sibson weights, offering a robust and innovative method for SSC modeling. The proposed expert system empowers hydrologists and engineers by selecting and applying the most suitable SSC models for different scenarios, leading to enhanced prediction accuracy and reliability. This work represents a significant advancement in the field of sediment transport modeling, providing a valuable tool for improved water resource management and environmental protection.
doi_str_mv 10.3390/w16243575
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3149767315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821984966</galeid><sourcerecordid>A821984966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-6ceb086f5da082986362c99ef582deee0804699f69347df0e6e03fa80a4d89fc3</originalsourceid><addsrcrecordid>eNpNUF1LwzAULaLg0D34DwI--bCZJmma-DbG1MF0g-pzyZqbmdE2Ncmc89dbmYj3PNzL5XzASZKrFI8plfh2n3LCaJZnJ8mA4JyOGGPp6b_7PBmGsMX9MClEhgfJdtlF29gv225QsQsdtBo0KkDbBtqInpyGOtyhCXp2H1Cj2WcHPqLiECI0aG_jGyo6Fa2q0cq7tVrb2kYLAalWo3lwtYq93crZNobL5MyoOsDwd18kr_ezl-njaLF8mE8ni1FFSBpHvII1FtxkWmFBpOCUk0pKMJkgGgCwwIxLabikLNcGAwdMjRJYMS2kqehFcn307bx730GI5dbtfNtHljRlMuc5TbOeNT6yNqqG0rbGRa-qHhoaW7kWjO3_E0FSKZjkvBfcHAWVdyF4MGXnbaP8oUxx-VN_-Vc__Qb6zncS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149767315</pqid></control><display><type>article</type><title>Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points</title><source>Publicly Available Content Database</source><creator>Sabat, Mira ; Terfous, Abdelali ; Ghenaim, Abdellah ; Sabat, Macole ; Draybi, Michel ; Romanos, Jimmy</creator><creatorcontrib>Sabat, Mira ; Terfous, Abdelali ; Ghenaim, Abdellah ; Sabat, Macole ; Draybi, Michel ; Romanos, Jimmy</creatorcontrib><description>Predicting suspended sediment concentration (SSC) profiles with high accuracy remains a critical challenge for environmental and engineering applications. This study presents a novel, data-driven expert system that leverages a knowledge-based framework to select optimal SSC models based on diverse flow conditions. The system utilizes model function ranges and spatial relationships between data points as key decision factors. This methodology is applied to study vertical velocity profiles and SSC distribution in steady and uniform river flows. The system systematically extracts and categorizes influencing parameters, generating weighted averages to interpolate and extrapolate profiles where single models exhibit limitations. Two weight calculation methods are implemented: (1) a spatial conditional probability approach utilizing a uniform distribution within control cells, and (2) an isolated point analysis based on distances to cell centers. This approach exhibits some similarities to Voronoi tessellations and associated Laplace and Sibson weights, offering a robust and innovative method for SSC modeling. The proposed expert system empowers hydrologists and engineers by selecting and applying the most suitable SSC models for different scenarios, leading to enhanced prediction accuracy and reliability. This work represents a significant advancement in the field of sediment transport modeling, providing a valuable tool for improved water resource management and environmental protection.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16243575</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Environmental engineering ; Finite volume method ; Management ; Neural networks ; Sediment transport ; Sediment, Suspended ; Velocity ; Water ; Water quality</subject><ispartof>Water (Basel), 2024-12, Vol.16 (24), p.3575</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-6ceb086f5da082986362c99ef582deee0804699f69347df0e6e03fa80a4d89fc3</cites><orcidid>0000-0002-5408-1657 ; 0000-0002-6148-9335 ; 0000-0001-9425-8413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149767315/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149767315?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Sabat, Mira</creatorcontrib><creatorcontrib>Terfous, Abdelali</creatorcontrib><creatorcontrib>Ghenaim, Abdellah</creatorcontrib><creatorcontrib>Sabat, Macole</creatorcontrib><creatorcontrib>Draybi, Michel</creatorcontrib><creatorcontrib>Romanos, Jimmy</creatorcontrib><title>Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points</title><title>Water (Basel)</title><description>Predicting suspended sediment concentration (SSC) profiles with high accuracy remains a critical challenge for environmental and engineering applications. This study presents a novel, data-driven expert system that leverages a knowledge-based framework to select optimal SSC models based on diverse flow conditions. The system utilizes model function ranges and spatial relationships between data points as key decision factors. This methodology is applied to study vertical velocity profiles and SSC distribution in steady and uniform river flows. The system systematically extracts and categorizes influencing parameters, generating weighted averages to interpolate and extrapolate profiles where single models exhibit limitations. Two weight calculation methods are implemented: (1) a spatial conditional probability approach utilizing a uniform distribution within control cells, and (2) an isolated point analysis based on distances to cell centers. This approach exhibits some similarities to Voronoi tessellations and associated Laplace and Sibson weights, offering a robust and innovative method for SSC modeling. The proposed expert system empowers hydrologists and engineers by selecting and applying the most suitable SSC models for different scenarios, leading to enhanced prediction accuracy and reliability. This work represents a significant advancement in the field of sediment transport modeling, providing a valuable tool for improved water resource management and environmental protection.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Environmental engineering</subject><subject>Finite volume method</subject><subject>Management</subject><subject>Neural networks</subject><subject>Sediment transport</subject><subject>Sediment, Suspended</subject><subject>Velocity</subject><subject>Water</subject><subject>Water quality</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUF1LwzAULaLg0D34DwI--bCZJmma-DbG1MF0g-pzyZqbmdE2Ncmc89dbmYj3PNzL5XzASZKrFI8plfh2n3LCaJZnJ8mA4JyOGGPp6b_7PBmGsMX9MClEhgfJdtlF29gv225QsQsdtBo0KkDbBtqInpyGOtyhCXp2H1Cj2WcHPqLiECI0aG_jGyo6Fa2q0cq7tVrb2kYLAalWo3lwtYq93crZNobL5MyoOsDwd18kr_ezl-njaLF8mE8ni1FFSBpHvII1FtxkWmFBpOCUk0pKMJkgGgCwwIxLabikLNcGAwdMjRJYMS2kqehFcn307bx730GI5dbtfNtHljRlMuc5TbOeNT6yNqqG0rbGRa-qHhoaW7kWjO3_E0FSKZjkvBfcHAWVdyF4MGXnbaP8oUxx-VN_-Vc__Qb6zncS</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Sabat, Mira</creator><creator>Terfous, Abdelali</creator><creator>Ghenaim, Abdellah</creator><creator>Sabat, Macole</creator><creator>Draybi, Michel</creator><creator>Romanos, Jimmy</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5408-1657</orcidid><orcidid>https://orcid.org/0000-0002-6148-9335</orcidid><orcidid>https://orcid.org/0000-0001-9425-8413</orcidid></search><sort><creationdate>20241201</creationdate><title>Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points</title><author>Sabat, Mira ; Terfous, Abdelali ; Ghenaim, Abdellah ; Sabat, Macole ; Draybi, Michel ; Romanos, Jimmy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-6ceb086f5da082986362c99ef582deee0804699f69347df0e6e03fa80a4d89fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Environmental engineering</topic><topic>Finite volume method</topic><topic>Management</topic><topic>Neural networks</topic><topic>Sediment transport</topic><topic>Sediment, Suspended</topic><topic>Velocity</topic><topic>Water</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabat, Mira</creatorcontrib><creatorcontrib>Terfous, Abdelali</creatorcontrib><creatorcontrib>Ghenaim, Abdellah</creatorcontrib><creatorcontrib>Sabat, Macole</creatorcontrib><creatorcontrib>Draybi, Michel</creatorcontrib><creatorcontrib>Romanos, Jimmy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabat, Mira</au><au>Terfous, Abdelali</au><au>Ghenaim, Abdellah</au><au>Sabat, Macole</au><au>Draybi, Michel</au><au>Romanos, Jimmy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points</atitle><jtitle>Water (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>24</issue><spage>3575</spage><pages>3575-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Predicting suspended sediment concentration (SSC) profiles with high accuracy remains a critical challenge for environmental and engineering applications. This study presents a novel, data-driven expert system that leverages a knowledge-based framework to select optimal SSC models based on diverse flow conditions. The system utilizes model function ranges and spatial relationships between data points as key decision factors. This methodology is applied to study vertical velocity profiles and SSC distribution in steady and uniform river flows. The system systematically extracts and categorizes influencing parameters, generating weighted averages to interpolate and extrapolate profiles where single models exhibit limitations. Two weight calculation methods are implemented: (1) a spatial conditional probability approach utilizing a uniform distribution within control cells, and (2) an isolated point analysis based on distances to cell centers. This approach exhibits some similarities to Voronoi tessellations and associated Laplace and Sibson weights, offering a robust and innovative method for SSC modeling. The proposed expert system empowers hydrologists and engineers by selecting and applying the most suitable SSC models for different scenarios, leading to enhanced prediction accuracy and reliability. This work represents a significant advancement in the field of sediment transport modeling, providing a valuable tool for improved water resource management and environmental protection.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16243575</doi><orcidid>https://orcid.org/0000-0002-5408-1657</orcidid><orcidid>https://orcid.org/0000-0002-6148-9335</orcidid><orcidid>https://orcid.org/0000-0001-9425-8413</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2024-12, Vol.16 (24), p.3575
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_3149767315
source Publicly Available Content Database
subjects Accuracy
Algorithms
Environmental engineering
Finite volume method
Management
Neural networks
Sediment transport
Sediment, Suspended
Velocity
Water
Water quality
title Optimizing Suspended Sediment Models: A Novel Expert System with Spatial Probabilities and Isolated Points
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Suspended%20Sediment%20Models:%20A%20Novel%20Expert%20System%20with%20Spatial%20Probabilities%20and%20Isolated%20Points&rft.jtitle=Water%20(Basel)&rft.au=Sabat,%20Mira&rft.date=2024-12-01&rft.volume=16&rft.issue=24&rft.spage=3575&rft.pages=3575-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16243575&rft_dat=%3Cgale_proqu%3EA821984966%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-6ceb086f5da082986362c99ef582deee0804699f69347df0e6e03fa80a4d89fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149767315&rft_id=info:pmid/&rft_galeid=A821984966&rfr_iscdi=true