Loading…

Fullerene‐Free p–i–n Perovskite Solar Cells: Direct Deposition of Tin Oxide on Perovskite Layer Using Ligand Bridges

In p–i–n perovskite solar cells (PSCs), fullerene derivatives are predominantly used as an electron transport material (ETM) despite their disadvantages, such as parasitic absorption in the short wavelength range and high cost. State‐of‐the‐art n‐i‐p PSCs are fabricated using SnO2 as the ETM due to...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2024-10, Vol.14 (48), p.n/a
Main Authors: Kim, Sung Yong, Woo, Mun Young, Jeong, Min Ju, Jeon, Soo Woong, Ahn, Jae Won, Park, Jeong Hyeon, Kim, Chan Young, Kim, Dong Hyun, Oh, Oui Jin, Yu, Giseon, Lee, Sangheon, Kim, Changyong, Kim, Dong Hoe, Noh, Jun Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2423-3f97d761212696840a9b4c39dec6effa36f5935b880ae86d376b04fa11d5b6ed3
container_end_page n/a
container_issue 48
container_start_page
container_title Advanced energy materials
container_volume 14
creator Kim, Sung Yong
Woo, Mun Young
Jeong, Min Ju
Jeon, Soo Woong
Ahn, Jae Won
Park, Jeong Hyeon
Kim, Chan Young
Kim, Dong Hyun
Oh, Oui Jin
Yu, Giseon
Lee, Sangheon
Kim, Changyong
Kim, Dong Hoe
Noh, Jun Hong
description In p–i–n perovskite solar cells (PSCs), fullerene derivatives are predominantly used as an electron transport material (ETM) despite their disadvantages, such as parasitic absorption in the short wavelength range and high cost. State‐of‐the‐art n‐i‐p PSCs are fabricated using SnO2 as the ETM due to their high charge transfer ability, transparency, and low cost. However, in p–i–n PSCs, dispersing SnO2 nanoparticles in a solvent that does not damage the perovskite and forming a uniform layer is challenging. Herein, a strategy of directly depositing SnO2 quantum dots (QDs) on perovskite using ethylenediamine (EDA) for high‐performance applications is reported, which involves a SnO2 QD solution designed with a damage‐free cosolvent. Treating the SnO2 QD layer with the EDA strategy creates a conformal SnO2 QD layer and improves charge transport. This strategy achieves a high power conversion efficiency (PCE) of 18.9% in PSCs with a 1.77 eV bandgap, which is the highest PCE reported for wide bandgap p–i–n PSCs using an inorganic ETM. The top SnO2 layer enables ITO deposition without sputtering damage and achieves a bifacial factor of 99% due to the high transmittance of SnO2 QD. The resulting four‐terminal all‐perovskite tandem exhibited a PCE of 27.0%. This study presents a strategy to directly deposit SnO₂ quantum dots (QDs) on perovskite using ethylenediamine in p–i–n PSCs. By mitigating sputtering damage and due to the high transmittance of SnO₂ QDs, a transparent solar cell with a bifacial factor of 99% is implemented, and a four‐terminal all‐perovskite tandem cell with a PCE of 27.0% is realized.
doi_str_mv 10.1002/aenm.202402433
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149803090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149803090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2423-3f97d761212696840a9b4c39dec6effa36f5935b880ae86d376b04fa11d5b6ed3</originalsourceid><addsrcrecordid>eNqFkM9OAjEQxjdGEwly9dzE82K7LWXrDfmjJquYCOemuztLiku7tqDiiUcw8Q15EpdgMJ6czGTm8P1mMl8QnBPcJhhHlwrMoh3hiNVJ6VHQIJywkMcMHx9mGp0GLe_nuA4mCKa0EXyMVmUJDgxsN58jB4Cq7eZL12XQIzj76p_1EtCTLZVDfShLf4UG2kG2RAOorNdLbQ2yBZpog8bvOgdk_5CJWoNDU6_NDCV6pkyOrp3OZ-DPgpNClR5aP70ZTEfDSf82TMY3d_1eEmYRi2hIC9HNu5xEJOJi95ASKcuoyCHjUBSK8qIjaCeNY6wg5jnt8hSzQhGSd1IOOW0GF_u9lbMvK_BLObcrZ-qTkhImYkyxwLWqvVdlznrvoJCV0wvl1pJgubNY7iyWB4trQOyBN13C-h-17A0f7n_Zb2Wxgqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149803090</pqid></control><display><type>article</type><title>Fullerene‐Free p–i–n Perovskite Solar Cells: Direct Deposition of Tin Oxide on Perovskite Layer Using Ligand Bridges</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Kim, Sung Yong ; Woo, Mun Young ; Jeong, Min Ju ; Jeon, Soo Woong ; Ahn, Jae Won ; Park, Jeong Hyeon ; Kim, Chan Young ; Kim, Dong Hyun ; Oh, Oui Jin ; Yu, Giseon ; Lee, Sangheon ; Kim, Changyong ; Kim, Dong Hoe ; Noh, Jun Hong</creator><creatorcontrib>Kim, Sung Yong ; Woo, Mun Young ; Jeong, Min Ju ; Jeon, Soo Woong ; Ahn, Jae Won ; Park, Jeong Hyeon ; Kim, Chan Young ; Kim, Dong Hyun ; Oh, Oui Jin ; Yu, Giseon ; Lee, Sangheon ; Kim, Changyong ; Kim, Dong Hoe ; Noh, Jun Hong</creatorcontrib><description>In p–i–n perovskite solar cells (PSCs), fullerene derivatives are predominantly used as an electron transport material (ETM) despite their disadvantages, such as parasitic absorption in the short wavelength range and high cost. State‐of‐the‐art n‐i‐p PSCs are fabricated using SnO2 as the ETM due to their high charge transfer ability, transparency, and low cost. However, in p–i–n PSCs, dispersing SnO2 nanoparticles in a solvent that does not damage the perovskite and forming a uniform layer is challenging. Herein, a strategy of directly depositing SnO2 quantum dots (QDs) on perovskite using ethylenediamine (EDA) for high‐performance applications is reported, which involves a SnO2 QD solution designed with a damage‐free cosolvent. Treating the SnO2 QD layer with the EDA strategy creates a conformal SnO2 QD layer and improves charge transport. This strategy achieves a high power conversion efficiency (PCE) of 18.9% in PSCs with a 1.77 eV bandgap, which is the highest PCE reported for wide bandgap p–i–n PSCs using an inorganic ETM. The top SnO2 layer enables ITO deposition without sputtering damage and achieves a bifacial factor of 99% due to the high transmittance of SnO2 QD. The resulting four‐terminal all‐perovskite tandem exhibited a PCE of 27.0%. This study presents a strategy to directly deposit SnO₂ quantum dots (QDs) on perovskite using ethylenediamine in p–i–n PSCs. By mitigating sputtering damage and due to the high transmittance of SnO₂ QDs, a transparent solar cell with a bifacial factor of 99% is implemented, and a four‐terminal all‐perovskite tandem cell with a PCE of 27.0% is realized.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202402433</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge efficiency ; Charge transfer ; Charge transport ; Damage ; Deposition ; Electron transport ; Energy conversion efficiency ; Energy gap ; Ethylenediamine ; Fullerenes ; perovskite ; Perovskites ; Photovoltaic cells ; p–i–n ; Quantum dots ; SnO2 ; Solar cells ; Tin dioxide ; tin oxide ; Tin oxides</subject><ispartof>Advanced energy materials, 2024-10, Vol.14 (48), p.n/a</ispartof><rights>2024 The Author(s). Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2423-3f97d761212696840a9b4c39dec6effa36f5935b880ae86d376b04fa11d5b6ed3</cites><orcidid>0009-0005-3647-6902 ; 0000-0002-1143-5822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Sung Yong</creatorcontrib><creatorcontrib>Woo, Mun Young</creatorcontrib><creatorcontrib>Jeong, Min Ju</creatorcontrib><creatorcontrib>Jeon, Soo Woong</creatorcontrib><creatorcontrib>Ahn, Jae Won</creatorcontrib><creatorcontrib>Park, Jeong Hyeon</creatorcontrib><creatorcontrib>Kim, Chan Young</creatorcontrib><creatorcontrib>Kim, Dong Hyun</creatorcontrib><creatorcontrib>Oh, Oui Jin</creatorcontrib><creatorcontrib>Yu, Giseon</creatorcontrib><creatorcontrib>Lee, Sangheon</creatorcontrib><creatorcontrib>Kim, Changyong</creatorcontrib><creatorcontrib>Kim, Dong Hoe</creatorcontrib><creatorcontrib>Noh, Jun Hong</creatorcontrib><title>Fullerene‐Free p–i–n Perovskite Solar Cells: Direct Deposition of Tin Oxide on Perovskite Layer Using Ligand Bridges</title><title>Advanced energy materials</title><description>In p–i–n perovskite solar cells (PSCs), fullerene derivatives are predominantly used as an electron transport material (ETM) despite their disadvantages, such as parasitic absorption in the short wavelength range and high cost. State‐of‐the‐art n‐i‐p PSCs are fabricated using SnO2 as the ETM due to their high charge transfer ability, transparency, and low cost. However, in p–i–n PSCs, dispersing SnO2 nanoparticles in a solvent that does not damage the perovskite and forming a uniform layer is challenging. Herein, a strategy of directly depositing SnO2 quantum dots (QDs) on perovskite using ethylenediamine (EDA) for high‐performance applications is reported, which involves a SnO2 QD solution designed with a damage‐free cosolvent. Treating the SnO2 QD layer with the EDA strategy creates a conformal SnO2 QD layer and improves charge transport. This strategy achieves a high power conversion efficiency (PCE) of 18.9% in PSCs with a 1.77 eV bandgap, which is the highest PCE reported for wide bandgap p–i–n PSCs using an inorganic ETM. The top SnO2 layer enables ITO deposition without sputtering damage and achieves a bifacial factor of 99% due to the high transmittance of SnO2 QD. The resulting four‐terminal all‐perovskite tandem exhibited a PCE of 27.0%. This study presents a strategy to directly deposit SnO₂ quantum dots (QDs) on perovskite using ethylenediamine in p–i–n PSCs. By mitigating sputtering damage and due to the high transmittance of SnO₂ QDs, a transparent solar cell with a bifacial factor of 99% is implemented, and a four‐terminal all‐perovskite tandem cell with a PCE of 27.0% is realized.</description><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Damage</subject><subject>Deposition</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Ethylenediamine</subject><subject>Fullerenes</subject><subject>perovskite</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>p–i–n</subject><subject>Quantum dots</subject><subject>SnO2</subject><subject>Solar cells</subject><subject>Tin dioxide</subject><subject>tin oxide</subject><subject>Tin oxides</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM9OAjEQxjdGEwly9dzE82K7LWXrDfmjJquYCOemuztLiku7tqDiiUcw8Q15EpdgMJ6czGTm8P1mMl8QnBPcJhhHlwrMoh3hiNVJ6VHQIJywkMcMHx9mGp0GLe_nuA4mCKa0EXyMVmUJDgxsN58jB4Cq7eZL12XQIzj76p_1EtCTLZVDfShLf4UG2kG2RAOorNdLbQ2yBZpog8bvOgdk_5CJWoNDU6_NDCV6pkyOrp3OZ-DPgpNClR5aP70ZTEfDSf82TMY3d_1eEmYRi2hIC9HNu5xEJOJi95ASKcuoyCHjUBSK8qIjaCeNY6wg5jnt8hSzQhGSd1IOOW0GF_u9lbMvK_BLObcrZ-qTkhImYkyxwLWqvVdlznrvoJCV0wvl1pJgubNY7iyWB4trQOyBN13C-h-17A0f7n_Zb2Wxgqg</recordid><startdate>20241012</startdate><enddate>20241012</enddate><creator>Kim, Sung Yong</creator><creator>Woo, Mun Young</creator><creator>Jeong, Min Ju</creator><creator>Jeon, Soo Woong</creator><creator>Ahn, Jae Won</creator><creator>Park, Jeong Hyeon</creator><creator>Kim, Chan Young</creator><creator>Kim, Dong Hyun</creator><creator>Oh, Oui Jin</creator><creator>Yu, Giseon</creator><creator>Lee, Sangheon</creator><creator>Kim, Changyong</creator><creator>Kim, Dong Hoe</creator><creator>Noh, Jun Hong</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0005-3647-6902</orcidid><orcidid>https://orcid.org/0000-0002-1143-5822</orcidid></search><sort><creationdate>20241012</creationdate><title>Fullerene‐Free p–i–n Perovskite Solar Cells: Direct Deposition of Tin Oxide on Perovskite Layer Using Ligand Bridges</title><author>Kim, Sung Yong ; Woo, Mun Young ; Jeong, Min Ju ; Jeon, Soo Woong ; Ahn, Jae Won ; Park, Jeong Hyeon ; Kim, Chan Young ; Kim, Dong Hyun ; Oh, Oui Jin ; Yu, Giseon ; Lee, Sangheon ; Kim, Changyong ; Kim, Dong Hoe ; Noh, Jun Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2423-3f97d761212696840a9b4c39dec6effa36f5935b880ae86d376b04fa11d5b6ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Damage</topic><topic>Deposition</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Ethylenediamine</topic><topic>Fullerenes</topic><topic>perovskite</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>p–i–n</topic><topic>Quantum dots</topic><topic>SnO2</topic><topic>Solar cells</topic><topic>Tin dioxide</topic><topic>tin oxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sung Yong</creatorcontrib><creatorcontrib>Woo, Mun Young</creatorcontrib><creatorcontrib>Jeong, Min Ju</creatorcontrib><creatorcontrib>Jeon, Soo Woong</creatorcontrib><creatorcontrib>Ahn, Jae Won</creatorcontrib><creatorcontrib>Park, Jeong Hyeon</creatorcontrib><creatorcontrib>Kim, Chan Young</creatorcontrib><creatorcontrib>Kim, Dong Hyun</creatorcontrib><creatorcontrib>Oh, Oui Jin</creatorcontrib><creatorcontrib>Yu, Giseon</creatorcontrib><creatorcontrib>Lee, Sangheon</creatorcontrib><creatorcontrib>Kim, Changyong</creatorcontrib><creatorcontrib>Kim, Dong Hoe</creatorcontrib><creatorcontrib>Noh, Jun Hong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sung Yong</au><au>Woo, Mun Young</au><au>Jeong, Min Ju</au><au>Jeon, Soo Woong</au><au>Ahn, Jae Won</au><au>Park, Jeong Hyeon</au><au>Kim, Chan Young</au><au>Kim, Dong Hyun</au><au>Oh, Oui Jin</au><au>Yu, Giseon</au><au>Lee, Sangheon</au><au>Kim, Changyong</au><au>Kim, Dong Hoe</au><au>Noh, Jun Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fullerene‐Free p–i–n Perovskite Solar Cells: Direct Deposition of Tin Oxide on Perovskite Layer Using Ligand Bridges</atitle><jtitle>Advanced energy materials</jtitle><date>2024-10-12</date><risdate>2024</risdate><volume>14</volume><issue>48</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>In p–i–n perovskite solar cells (PSCs), fullerene derivatives are predominantly used as an electron transport material (ETM) despite their disadvantages, such as parasitic absorption in the short wavelength range and high cost. State‐of‐the‐art n‐i‐p PSCs are fabricated using SnO2 as the ETM due to their high charge transfer ability, transparency, and low cost. However, in p–i–n PSCs, dispersing SnO2 nanoparticles in a solvent that does not damage the perovskite and forming a uniform layer is challenging. Herein, a strategy of directly depositing SnO2 quantum dots (QDs) on perovskite using ethylenediamine (EDA) for high‐performance applications is reported, which involves a SnO2 QD solution designed with a damage‐free cosolvent. Treating the SnO2 QD layer with the EDA strategy creates a conformal SnO2 QD layer and improves charge transport. This strategy achieves a high power conversion efficiency (PCE) of 18.9% in PSCs with a 1.77 eV bandgap, which is the highest PCE reported for wide bandgap p–i–n PSCs using an inorganic ETM. The top SnO2 layer enables ITO deposition without sputtering damage and achieves a bifacial factor of 99% due to the high transmittance of SnO2 QD. The resulting four‐terminal all‐perovskite tandem exhibited a PCE of 27.0%. This study presents a strategy to directly deposit SnO₂ quantum dots (QDs) on perovskite using ethylenediamine in p–i–n PSCs. By mitigating sputtering damage and due to the high transmittance of SnO₂ QDs, a transparent solar cell with a bifacial factor of 99% is implemented, and a four‐terminal all‐perovskite tandem cell with a PCE of 27.0% is realized.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202402433</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0005-3647-6902</orcidid><orcidid>https://orcid.org/0000-0002-1143-5822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-10, Vol.14 (48), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_3149803090
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Charge efficiency
Charge transfer
Charge transport
Damage
Deposition
Electron transport
Energy conversion efficiency
Energy gap
Ethylenediamine
Fullerenes
perovskite
Perovskites
Photovoltaic cells
p–i–n
Quantum dots
SnO2
Solar cells
Tin dioxide
tin oxide
Tin oxides
title Fullerene‐Free p–i–n Perovskite Solar Cells: Direct Deposition of Tin Oxide on Perovskite Layer Using Ligand Bridges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fullerene%E2%80%90Free%20p%E2%80%93i%E2%80%93n%20Perovskite%20Solar%20Cells:%20Direct%20Deposition%20of%20Tin%20Oxide%20on%20Perovskite%20Layer%20Using%20Ligand%20Bridges&rft.jtitle=Advanced%20energy%20materials&rft.au=Kim,%20Sung%20Yong&rft.date=2024-10-12&rft.volume=14&rft.issue=48&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202402433&rft_dat=%3Cproquest_cross%3E3149803090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2423-3f97d761212696840a9b4c39dec6effa36f5935b880ae86d376b04fa11d5b6ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149803090&rft_id=info:pmid/&rfr_iscdi=true