Loading…

Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids

The simulation of viscoelastic liquids using the Lattice–Boltzmann method (LBM) in full three dimensions remains a formidable numerical challenge. In particular the simulation of strongly shear‐thinning fluids, where the ratio between the high‐shear and low‐shear viscosities is large, is often preve...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids 2025-02, Vol.97 (2), p.164-187
Main Authors: Kellnberger, Richard, Jüngst, Tomasz, Gekle, Stephan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2185-bf4bb7a00177ce882e59b8518fe3d9471f6fdbbabb2403e383b7992c428e9113
container_end_page 187
container_issue 2
container_start_page 164
container_title International journal for numerical methods in fluids
container_volume 97
creator Kellnberger, Richard
Jüngst, Tomasz
Gekle, Stephan
description The simulation of viscoelastic liquids using the Lattice–Boltzmann method (LBM) in full three dimensions remains a formidable numerical challenge. In particular the simulation of strongly shear‐thinning fluids, where the ratio between the high‐shear and low‐shear viscosities is large, is often prevented by stability problems. Here we present a novel approach to overcome this issue. The central idea is to artificially increase the solvent viscosity which allows the method to benefit from the very good stability properties of the LBM. To compensate for this additional viscous stress, the polymer stress is reduced by the same amount. We apply this novel method to simulate two realistic cell carrier fluids, methyl cellulose and alginate solutions, of which the latter exhibits a viscosity ratio exceeding 10,000. We develop a novel viscosity shuffling Lattice–Boltzmann method to enable the simulation of shear thinning viscoelastic fluids with high viscosity ratios.
doi_str_mv 10.1002/fld.5335
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3150979780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150979780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2185-bf4bb7a00177ce882e59b8518fe3d9471f6fdbbabb2403e383b7992c428e9113</originalsourceid><addsrcrecordid>eNp10E9LwzAYx_EgCs4p-BICXrx05k-7JEedToWhlx2FkLTJlpEmM2kn89XbOa-ensuH3wNfAK4xmmCEyJ31zaSitDoBI4wEKxCd0lMwQoThgiCBz8FFzhuEkCCcjsDHW9wZD73qOlcb-BB9992qEGBrunVsoI0JZtf2A3AxwGhh7lIMK7-HeW1Ugt3aheDCCu5crqPxKg9D0PreNfkSnFnls7n6u2OwnD8tZy_F4v35dXa_KGqCeVVoW2rNFEKYsdpwTkwlNK8wt4Y2omTYTm2jtdKalIgayqlmQpC6JNwIjOkY3Bxntyl-9iZ3chP7FIaPkuJqiCAYR4O6Pao6xZyTsXKbXKvSXmIkD-nkkE4e0g20ONIv583-Xyfni8df_wNrVnCi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150979780</pqid></control><display><type>article</type><title>Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids</title><source>Wiley</source><creator>Kellnberger, Richard ; Jüngst, Tomasz ; Gekle, Stephan</creator><creatorcontrib>Kellnberger, Richard ; Jüngst, Tomasz ; Gekle, Stephan</creatorcontrib><description>The simulation of viscoelastic liquids using the Lattice–Boltzmann method (LBM) in full three dimensions remains a formidable numerical challenge. In particular the simulation of strongly shear‐thinning fluids, where the ratio between the high‐shear and low‐shear viscosities is large, is often prevented by stability problems. Here we present a novel approach to overcome this issue. The central idea is to artificially increase the solvent viscosity which allows the method to benefit from the very good stability properties of the LBM. To compensate for this additional viscous stress, the polymer stress is reduced by the same amount. We apply this novel method to simulate two realistic cell carrier fluids, methyl cellulose and alginate solutions, of which the latter exhibits a viscosity ratio exceeding 10,000. We develop a novel viscosity shuffling Lattice–Boltzmann method to enable the simulation of shear thinning viscoelastic fluids with high viscosity ratios.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.5335</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Addition polymerization ; Alginates ; Alginic acid ; biofluidics ; Cellulose ; Fluids ; immersed boundary ; laminar flow ; lattice Boltzmann ; Liquids ; Mathematical models ; Methylcellulose ; microfluidics ; non‐Newtonian ; Polymers ; Seaweed meal ; Shear ; Shear thinning (liquids) ; Stability ; Thinning ; Viscoelastic fluids ; Viscoelastic liquids ; Viscoelasticity ; Viscosity ; Viscosity ratio</subject><ispartof>International journal for numerical methods in fluids, 2025-02, Vol.97 (2), p.164-187</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2185-bf4bb7a00177ce882e59b8518fe3d9471f6fdbbabb2403e383b7992c428e9113</cites><orcidid>0000-0001-5597-1160 ; 0009-0003-1782-4735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kellnberger, Richard</creatorcontrib><creatorcontrib>Jüngst, Tomasz</creatorcontrib><creatorcontrib>Gekle, Stephan</creatorcontrib><title>Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids</title><title>International journal for numerical methods in fluids</title><description>The simulation of viscoelastic liquids using the Lattice–Boltzmann method (LBM) in full three dimensions remains a formidable numerical challenge. In particular the simulation of strongly shear‐thinning fluids, where the ratio between the high‐shear and low‐shear viscosities is large, is often prevented by stability problems. Here we present a novel approach to overcome this issue. The central idea is to artificially increase the solvent viscosity which allows the method to benefit from the very good stability properties of the LBM. To compensate for this additional viscous stress, the polymer stress is reduced by the same amount. We apply this novel method to simulate two realistic cell carrier fluids, methyl cellulose and alginate solutions, of which the latter exhibits a viscosity ratio exceeding 10,000. We develop a novel viscosity shuffling Lattice–Boltzmann method to enable the simulation of shear thinning viscoelastic fluids with high viscosity ratios.</description><subject>Addition polymerization</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>biofluidics</subject><subject>Cellulose</subject><subject>Fluids</subject><subject>immersed boundary</subject><subject>laminar flow</subject><subject>lattice Boltzmann</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Methylcellulose</subject><subject>microfluidics</subject><subject>non‐Newtonian</subject><subject>Polymers</subject><subject>Seaweed meal</subject><subject>Shear</subject><subject>Shear thinning (liquids)</subject><subject>Stability</subject><subject>Thinning</subject><subject>Viscoelastic fluids</subject><subject>Viscoelastic liquids</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><subject>Viscosity ratio</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10E9LwzAYx_EgCs4p-BICXrx05k-7JEedToWhlx2FkLTJlpEmM2kn89XbOa-ensuH3wNfAK4xmmCEyJ31zaSitDoBI4wEKxCd0lMwQoThgiCBz8FFzhuEkCCcjsDHW9wZD73qOlcb-BB9992qEGBrunVsoI0JZtf2A3AxwGhh7lIMK7-HeW1Ugt3aheDCCu5crqPxKg9D0PreNfkSnFnls7n6u2OwnD8tZy_F4v35dXa_KGqCeVVoW2rNFEKYsdpwTkwlNK8wt4Y2omTYTm2jtdKalIgayqlmQpC6JNwIjOkY3Bxntyl-9iZ3chP7FIaPkuJqiCAYR4O6Pao6xZyTsXKbXKvSXmIkD-nkkE4e0g20ONIv583-Xyfni8df_wNrVnCi</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Kellnberger, Richard</creator><creator>Jüngst, Tomasz</creator><creator>Gekle, Stephan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5597-1160</orcidid><orcidid>https://orcid.org/0009-0003-1782-4735</orcidid></search><sort><creationdate>202502</creationdate><title>Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids</title><author>Kellnberger, Richard ; Jüngst, Tomasz ; Gekle, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2185-bf4bb7a00177ce882e59b8518fe3d9471f6fdbbabb2403e383b7992c428e9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Addition polymerization</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>biofluidics</topic><topic>Cellulose</topic><topic>Fluids</topic><topic>immersed boundary</topic><topic>laminar flow</topic><topic>lattice Boltzmann</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Methylcellulose</topic><topic>microfluidics</topic><topic>non‐Newtonian</topic><topic>Polymers</topic><topic>Seaweed meal</topic><topic>Shear</topic><topic>Shear thinning (liquids)</topic><topic>Stability</topic><topic>Thinning</topic><topic>Viscoelastic fluids</topic><topic>Viscoelastic liquids</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><topic>Viscosity ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellnberger, Richard</creatorcontrib><creatorcontrib>Jüngst, Tomasz</creatorcontrib><creatorcontrib>Gekle, Stephan</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellnberger, Richard</au><au>Jüngst, Tomasz</au><au>Gekle, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids</atitle><jtitle>International journal for numerical methods in fluids</jtitle><date>2025-02</date><risdate>2025</risdate><volume>97</volume><issue>2</issue><spage>164</spage><epage>187</epage><pages>164-187</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><abstract>The simulation of viscoelastic liquids using the Lattice–Boltzmann method (LBM) in full three dimensions remains a formidable numerical challenge. In particular the simulation of strongly shear‐thinning fluids, where the ratio between the high‐shear and low‐shear viscosities is large, is often prevented by stability problems. Here we present a novel approach to overcome this issue. The central idea is to artificially increase the solvent viscosity which allows the method to benefit from the very good stability properties of the LBM. To compensate for this additional viscous stress, the polymer stress is reduced by the same amount. We apply this novel method to simulate two realistic cell carrier fluids, methyl cellulose and alginate solutions, of which the latter exhibits a viscosity ratio exceeding 10,000. We develop a novel viscosity shuffling Lattice–Boltzmann method to enable the simulation of shear thinning viscoelastic fluids with high viscosity ratios.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fld.5335</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-5597-1160</orcidid><orcidid>https://orcid.org/0009-0003-1782-4735</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2025-02, Vol.97 (2), p.164-187
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_journals_3150979780
source Wiley
subjects Addition polymerization
Alginates
Alginic acid
biofluidics
Cellulose
Fluids
immersed boundary
laminar flow
lattice Boltzmann
Liquids
Mathematical models
Methylcellulose
microfluidics
non‐Newtonian
Polymers
Seaweed meal
Shear
Shear thinning (liquids)
Stability
Thinning
Viscoelastic fluids
Viscoelastic liquids
Viscoelasticity
Viscosity
Viscosity ratio
title Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20lattice%20Boltzmann%20method%20for%20simulation%20of%20strongly%20shear%20thinning%20viscoelastic%20fluids&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Kellnberger,%20Richard&rft.date=2025-02&rft.volume=97&rft.issue=2&rft.spage=164&rft.epage=187&rft.pages=164-187&rft.issn=0271-2091&rft.eissn=1097-0363&rft_id=info:doi/10.1002/fld.5335&rft_dat=%3Cproquest_cross%3E3150979780%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2185-bf4bb7a00177ce882e59b8518fe3d9471f6fdbbabb2403e383b7992c428e9113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3150979780&rft_id=info:pmid/&rfr_iscdi=true