Loading…
Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids
The simulation of viscoelastic liquids using the Lattice–Boltzmann method (LBM) in full three dimensions remains a formidable numerical challenge. In particular the simulation of strongly shear‐thinning fluids, where the ratio between the high‐shear and low‐shear viscosities is large, is often preve...
Saved in:
Published in: | International journal for numerical methods in fluids 2025-02, Vol.97 (2), p.164-187 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2185-bf4bb7a00177ce882e59b8518fe3d9471f6fdbbabb2403e383b7992c428e9113 |
container_end_page | 187 |
container_issue | 2 |
container_start_page | 164 |
container_title | International journal for numerical methods in fluids |
container_volume | 97 |
creator | Kellnberger, Richard Jüngst, Tomasz Gekle, Stephan |
description | The simulation of viscoelastic liquids using the Lattice–Boltzmann method (LBM) in full three dimensions remains a formidable numerical challenge. In particular the simulation of strongly shear‐thinning fluids, where the ratio between the high‐shear and low‐shear viscosities is large, is often prevented by stability problems. Here we present a novel approach to overcome this issue. The central idea is to artificially increase the solvent viscosity which allows the method to benefit from the very good stability properties of the LBM. To compensate for this additional viscous stress, the polymer stress is reduced by the same amount. We apply this novel method to simulate two realistic cell carrier fluids, methyl cellulose and alginate solutions, of which the latter exhibits a viscosity ratio exceeding 10,000.
We develop a novel viscosity shuffling Lattice–Boltzmann method to enable the simulation of shear thinning viscoelastic fluids with high viscosity ratios. |
doi_str_mv | 10.1002/fld.5335 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3150979780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150979780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2185-bf4bb7a00177ce882e59b8518fe3d9471f6fdbbabb2403e383b7992c428e9113</originalsourceid><addsrcrecordid>eNp10E9LwzAYx_EgCs4p-BICXrx05k-7JEedToWhlx2FkLTJlpEmM2kn89XbOa-ensuH3wNfAK4xmmCEyJ31zaSitDoBI4wEKxCd0lMwQoThgiCBz8FFzhuEkCCcjsDHW9wZD73qOlcb-BB9992qEGBrunVsoI0JZtf2A3AxwGhh7lIMK7-HeW1Ugt3aheDCCu5crqPxKg9D0PreNfkSnFnls7n6u2OwnD8tZy_F4v35dXa_KGqCeVVoW2rNFEKYsdpwTkwlNK8wt4Y2omTYTm2jtdKalIgayqlmQpC6JNwIjOkY3Bxntyl-9iZ3chP7FIaPkuJqiCAYR4O6Pao6xZyTsXKbXKvSXmIkD-nkkE4e0g20ONIv583-Xyfni8df_wNrVnCi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150979780</pqid></control><display><type>article</type><title>Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids</title><source>Wiley</source><creator>Kellnberger, Richard ; Jüngst, Tomasz ; Gekle, Stephan</creator><creatorcontrib>Kellnberger, Richard ; Jüngst, Tomasz ; Gekle, Stephan</creatorcontrib><description>The simulation of viscoelastic liquids using the Lattice–Boltzmann method (LBM) in full three dimensions remains a formidable numerical challenge. In particular the simulation of strongly shear‐thinning fluids, where the ratio between the high‐shear and low‐shear viscosities is large, is often prevented by stability problems. Here we present a novel approach to overcome this issue. The central idea is to artificially increase the solvent viscosity which allows the method to benefit from the very good stability properties of the LBM. To compensate for this additional viscous stress, the polymer stress is reduced by the same amount. We apply this novel method to simulate two realistic cell carrier fluids, methyl cellulose and alginate solutions, of which the latter exhibits a viscosity ratio exceeding 10,000.
We develop a novel viscosity shuffling Lattice–Boltzmann method to enable the simulation of shear thinning viscoelastic fluids with high viscosity ratios.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.5335</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Addition polymerization ; Alginates ; Alginic acid ; biofluidics ; Cellulose ; Fluids ; immersed boundary ; laminar flow ; lattice Boltzmann ; Liquids ; Mathematical models ; Methylcellulose ; microfluidics ; non‐Newtonian ; Polymers ; Seaweed meal ; Shear ; Shear thinning (liquids) ; Stability ; Thinning ; Viscoelastic fluids ; Viscoelastic liquids ; Viscoelasticity ; Viscosity ; Viscosity ratio</subject><ispartof>International journal for numerical methods in fluids, 2025-02, Vol.97 (2), p.164-187</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2185-bf4bb7a00177ce882e59b8518fe3d9471f6fdbbabb2403e383b7992c428e9113</cites><orcidid>0000-0001-5597-1160 ; 0009-0003-1782-4735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kellnberger, Richard</creatorcontrib><creatorcontrib>Jüngst, Tomasz</creatorcontrib><creatorcontrib>Gekle, Stephan</creatorcontrib><title>Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids</title><title>International journal for numerical methods in fluids</title><description>The simulation of viscoelastic liquids using the Lattice–Boltzmann method (LBM) in full three dimensions remains a formidable numerical challenge. In particular the simulation of strongly shear‐thinning fluids, where the ratio between the high‐shear and low‐shear viscosities is large, is often prevented by stability problems. Here we present a novel approach to overcome this issue. The central idea is to artificially increase the solvent viscosity which allows the method to benefit from the very good stability properties of the LBM. To compensate for this additional viscous stress, the polymer stress is reduced by the same amount. We apply this novel method to simulate two realistic cell carrier fluids, methyl cellulose and alginate solutions, of which the latter exhibits a viscosity ratio exceeding 10,000.
We develop a novel viscosity shuffling Lattice–Boltzmann method to enable the simulation of shear thinning viscoelastic fluids with high viscosity ratios.</description><subject>Addition polymerization</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>biofluidics</subject><subject>Cellulose</subject><subject>Fluids</subject><subject>immersed boundary</subject><subject>laminar flow</subject><subject>lattice Boltzmann</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Methylcellulose</subject><subject>microfluidics</subject><subject>non‐Newtonian</subject><subject>Polymers</subject><subject>Seaweed meal</subject><subject>Shear</subject><subject>Shear thinning (liquids)</subject><subject>Stability</subject><subject>Thinning</subject><subject>Viscoelastic fluids</subject><subject>Viscoelastic liquids</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><subject>Viscosity ratio</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10E9LwzAYx_EgCs4p-BICXrx05k-7JEedToWhlx2FkLTJlpEmM2kn89XbOa-ensuH3wNfAK4xmmCEyJ31zaSitDoBI4wEKxCd0lMwQoThgiCBz8FFzhuEkCCcjsDHW9wZD73qOlcb-BB9992qEGBrunVsoI0JZtf2A3AxwGhh7lIMK7-HeW1Ugt3aheDCCu5crqPxKg9D0PreNfkSnFnls7n6u2OwnD8tZy_F4v35dXa_KGqCeVVoW2rNFEKYsdpwTkwlNK8wt4Y2omTYTm2jtdKalIgayqlmQpC6JNwIjOkY3Bxntyl-9iZ3chP7FIaPkuJqiCAYR4O6Pao6xZyTsXKbXKvSXmIkD-nkkE4e0g20ONIv583-Xyfni8df_wNrVnCi</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Kellnberger, Richard</creator><creator>Jüngst, Tomasz</creator><creator>Gekle, Stephan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5597-1160</orcidid><orcidid>https://orcid.org/0009-0003-1782-4735</orcidid></search><sort><creationdate>202502</creationdate><title>Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids</title><author>Kellnberger, Richard ; Jüngst, Tomasz ; Gekle, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2185-bf4bb7a00177ce882e59b8518fe3d9471f6fdbbabb2403e383b7992c428e9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Addition polymerization</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>biofluidics</topic><topic>Cellulose</topic><topic>Fluids</topic><topic>immersed boundary</topic><topic>laminar flow</topic><topic>lattice Boltzmann</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Methylcellulose</topic><topic>microfluidics</topic><topic>non‐Newtonian</topic><topic>Polymers</topic><topic>Seaweed meal</topic><topic>Shear</topic><topic>Shear thinning (liquids)</topic><topic>Stability</topic><topic>Thinning</topic><topic>Viscoelastic fluids</topic><topic>Viscoelastic liquids</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><topic>Viscosity ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellnberger, Richard</creatorcontrib><creatorcontrib>Jüngst, Tomasz</creatorcontrib><creatorcontrib>Gekle, Stephan</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellnberger, Richard</au><au>Jüngst, Tomasz</au><au>Gekle, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids</atitle><jtitle>International journal for numerical methods in fluids</jtitle><date>2025-02</date><risdate>2025</risdate><volume>97</volume><issue>2</issue><spage>164</spage><epage>187</epage><pages>164-187</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><abstract>The simulation of viscoelastic liquids using the Lattice–Boltzmann method (LBM) in full three dimensions remains a formidable numerical challenge. In particular the simulation of strongly shear‐thinning fluids, where the ratio between the high‐shear and low‐shear viscosities is large, is often prevented by stability problems. Here we present a novel approach to overcome this issue. The central idea is to artificially increase the solvent viscosity which allows the method to benefit from the very good stability properties of the LBM. To compensate for this additional viscous stress, the polymer stress is reduced by the same amount. We apply this novel method to simulate two realistic cell carrier fluids, methyl cellulose and alginate solutions, of which the latter exhibits a viscosity ratio exceeding 10,000.
We develop a novel viscosity shuffling Lattice–Boltzmann method to enable the simulation of shear thinning viscoelastic fluids with high viscosity ratios.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fld.5335</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-5597-1160</orcidid><orcidid>https://orcid.org/0009-0003-1782-4735</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2025-02, Vol.97 (2), p.164-187 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_proquest_journals_3150979780 |
source | Wiley |
subjects | Addition polymerization Alginates Alginic acid biofluidics Cellulose Fluids immersed boundary laminar flow lattice Boltzmann Liquids Mathematical models Methylcellulose microfluidics non‐Newtonian Polymers Seaweed meal Shear Shear thinning (liquids) Stability Thinning Viscoelastic fluids Viscoelastic liquids Viscoelasticity Viscosity Viscosity ratio |
title | Novel lattice Boltzmann method for simulation of strongly shear thinning viscoelastic fluids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20lattice%20Boltzmann%20method%20for%20simulation%20of%20strongly%20shear%20thinning%20viscoelastic%20fluids&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Kellnberger,%20Richard&rft.date=2025-02&rft.volume=97&rft.issue=2&rft.spage=164&rft.epage=187&rft.pages=164-187&rft.issn=0271-2091&rft.eissn=1097-0363&rft_id=info:doi/10.1002/fld.5335&rft_dat=%3Cproquest_cross%3E3150979780%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2185-bf4bb7a00177ce882e59b8518fe3d9471f6fdbbabb2403e383b7992c428e9113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3150979780&rft_id=info:pmid/&rfr_iscdi=true |