Loading…
Inverse Leidenfrost impacting drops
We investigate the spreading of falling ambient-temperature Newtonian drops after their normal impact on a quartz plate covered with a thin layer of liquid nitrogen. As a drop expands, liquid nitrogen evaporates, generating a vapour film that maintains the drop in levitation. Consequently, the latte...
Saved in:
Published in: | Journal of fluid mechanics 2025-01, Vol.1002, Article A32 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1069-353d8f55541f82b116e6ffdde8e191153d540a48b7951987d143396207ed065f3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 1002 |
creator | Isukwem, Kindness Charles, Carole-Ann Phou, Ty Ramos, Laurence Ligoure, Christian Hachem, Elie Pereira, Anselmo |
description | We investigate the spreading of falling ambient-temperature Newtonian drops after their normal impact on a quartz plate covered with a thin layer of liquid nitrogen. As a drop expands, liquid nitrogen evaporates, generating a vapour film that maintains the drop in levitation. Consequently, the latter spreads in inverse Leidenfrost conditions. Three drop-spreading regimes are observed: (i) inertio-capillary, (ii) inertio-viscous, and (iii) inertio-viscous-capillary. In the first regime, although the drop expansion is essentially driven by a competition between inertial and capillary stresses, it is also affected by viscous effects emerging from the vapour film, which ultimately favours the development of a shear flow within the drop. Interestingly, vapour film effects become marginal in both the second and third regimes, allowing the drop to undergo biaxial extension primarily. More specifically, in the inertio-viscous scenario, the expansion is driven by the balance between inertial and biaxial extensional viscous stresses in the drop. Finally, inertia, capillarity and drop viscosity are all relevant in the third regime. These physical mechanisms are underlined through a mixed approach combining experiments with multiphase three-dimensional numerical simulations in light of spreading dynamics analyses, energy transfer and scaling laws. Our results are rationalized in a two-dimensional diagram linking the drops’ maximum expansion and spreading time with the observed spreading regimes through a single dimensionless parameter given by the square root of the capillary number (the ratio of the viscous stress to the capillary stress). |
doi_str_mv | 10.1017/jfm.2024.1164 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3150998929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_1164</cupid><sourcerecordid>3150998929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1069-353d8f55541f82b116e6ffdde8e191153d540a48b7951987d143396207ed065f3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMoWFeP3gt77u5MPprmKIu6CwUveg5tkywt9sOkK_jvTdkFL57mMM-87_AQ8oiwQUC57Vy_oUD5BjHnVyRBnqtM5lxckwSA0gyRwi25C6EDQAZKJmR9GL6tDzYtbWvs4PwY5rTtp6qZ2-GYGj9O4Z7cuOoz2IfLXJGPl-f33T4r314Pu6cyaxBiExPMFE4IwdEVtI5P2Nw5Y2xhUSHGreBQ8aKWSqAqpEHOmMopSGsgF46tyPqcO_nx62TDrLvx5IdYqRkKUKpQVEUqO1NN_DV46_Tk277yPxpBLx509KAXD3rxEPntha_62rfmaP9i_7_4BRGRXQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150998929</pqid></control><display><type>article</type><title>Inverse Leidenfrost impacting drops</title><source>Cambridge Journals Online</source><creator>Isukwem, Kindness ; Charles, Carole-Ann ; Phou, Ty ; Ramos, Laurence ; Ligoure, Christian ; Hachem, Elie ; Pereira, Anselmo</creator><creatorcontrib>Isukwem, Kindness ; Charles, Carole-Ann ; Phou, Ty ; Ramos, Laurence ; Ligoure, Christian ; Hachem, Elie ; Pereira, Anselmo</creatorcontrib><description>We investigate the spreading of falling ambient-temperature Newtonian drops after their normal impact on a quartz plate covered with a thin layer of liquid nitrogen. As a drop expands, liquid nitrogen evaporates, generating a vapour film that maintains the drop in levitation. Consequently, the latter spreads in inverse Leidenfrost conditions. Three drop-spreading regimes are observed: (i) inertio-capillary, (ii) inertio-viscous, and (iii) inertio-viscous-capillary. In the first regime, although the drop expansion is essentially driven by a competition between inertial and capillary stresses, it is also affected by viscous effects emerging from the vapour film, which ultimately favours the development of a shear flow within the drop. Interestingly, vapour film effects become marginal in both the second and third regimes, allowing the drop to undergo biaxial extension primarily. More specifically, in the inertio-viscous scenario, the expansion is driven by the balance between inertial and biaxial extensional viscous stresses in the drop. Finally, inertia, capillarity and drop viscosity are all relevant in the third regime. These physical mechanisms are underlined through a mixed approach combining experiments with multiphase three-dimensional numerical simulations in light of spreading dynamics analyses, energy transfer and scaling laws. Our results are rationalized in a two-dimensional diagram linking the drops’ maximum expansion and spreading time with the observed spreading regimes through a single dimensionless parameter given by the square root of the capillary number (the ratio of the viscous stress to the capillary stress).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.1164</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Ambient temperature ; Cameras ; Capillarity ; Capillary flow ; Dimensionless numbers ; Energy transfer ; Gravity ; Inertia ; JFM Papers ; Levitation ; Liquid nitrogen ; Nitrogen ; Scaling ; Scaling laws ; Shear flow ; Spreading ; Stresses ; Three dimensional analysis ; Two dimensional analysis ; Vapors ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2025-01, Vol.1002, Article A32</ispartof><rights>The Author(s), 2025. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1069-353d8f55541f82b116e6ffdde8e191153d540a48b7951987d143396207ed065f3</cites><orcidid>0000-0001-6688-1013 ; 0000-0003-3445-6826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024011649/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,72731</link.rule.ids></links><search><creatorcontrib>Isukwem, Kindness</creatorcontrib><creatorcontrib>Charles, Carole-Ann</creatorcontrib><creatorcontrib>Phou, Ty</creatorcontrib><creatorcontrib>Ramos, Laurence</creatorcontrib><creatorcontrib>Ligoure, Christian</creatorcontrib><creatorcontrib>Hachem, Elie</creatorcontrib><creatorcontrib>Pereira, Anselmo</creatorcontrib><title>Inverse Leidenfrost impacting drops</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate the spreading of falling ambient-temperature Newtonian drops after their normal impact on a quartz plate covered with a thin layer of liquid nitrogen. As a drop expands, liquid nitrogen evaporates, generating a vapour film that maintains the drop in levitation. Consequently, the latter spreads in inverse Leidenfrost conditions. Three drop-spreading regimes are observed: (i) inertio-capillary, (ii) inertio-viscous, and (iii) inertio-viscous-capillary. In the first regime, although the drop expansion is essentially driven by a competition between inertial and capillary stresses, it is also affected by viscous effects emerging from the vapour film, which ultimately favours the development of a shear flow within the drop. Interestingly, vapour film effects become marginal in both the second and third regimes, allowing the drop to undergo biaxial extension primarily. More specifically, in the inertio-viscous scenario, the expansion is driven by the balance between inertial and biaxial extensional viscous stresses in the drop. Finally, inertia, capillarity and drop viscosity are all relevant in the third regime. These physical mechanisms are underlined through a mixed approach combining experiments with multiphase three-dimensional numerical simulations in light of spreading dynamics analyses, energy transfer and scaling laws. Our results are rationalized in a two-dimensional diagram linking the drops’ maximum expansion and spreading time with the observed spreading regimes through a single dimensionless parameter given by the square root of the capillary number (the ratio of the viscous stress to the capillary stress).</description><subject>Ambient temperature</subject><subject>Cameras</subject><subject>Capillarity</subject><subject>Capillary flow</subject><subject>Dimensionless numbers</subject><subject>Energy transfer</subject><subject>Gravity</subject><subject>Inertia</subject><subject>JFM Papers</subject><subject>Levitation</subject><subject>Liquid nitrogen</subject><subject>Nitrogen</subject><subject>Scaling</subject><subject>Scaling laws</subject><subject>Shear flow</subject><subject>Spreading</subject><subject>Stresses</subject><subject>Three dimensional analysis</subject><subject>Two dimensional analysis</subject><subject>Vapors</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAQhoMoWFeP3gt77u5MPprmKIu6CwUveg5tkywt9sOkK_jvTdkFL57mMM-87_AQ8oiwQUC57Vy_oUD5BjHnVyRBnqtM5lxckwSA0gyRwi25C6EDQAZKJmR9GL6tDzYtbWvs4PwY5rTtp6qZ2-GYGj9O4Z7cuOoz2IfLXJGPl-f33T4r314Pu6cyaxBiExPMFE4IwdEVtI5P2Nw5Y2xhUSHGreBQ8aKWSqAqpEHOmMopSGsgF46tyPqcO_nx62TDrLvx5IdYqRkKUKpQVEUqO1NN_DV46_Tk277yPxpBLx509KAXD3rxEPntha_62rfmaP9i_7_4BRGRXQo</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Isukwem, Kindness</creator><creator>Charles, Carole-Ann</creator><creator>Phou, Ty</creator><creator>Ramos, Laurence</creator><creator>Ligoure, Christian</creator><creator>Hachem, Elie</creator><creator>Pereira, Anselmo</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6688-1013</orcidid><orcidid>https://orcid.org/0000-0003-3445-6826</orcidid></search><sort><creationdate>20250110</creationdate><title>Inverse Leidenfrost impacting drops</title><author>Isukwem, Kindness ; Charles, Carole-Ann ; Phou, Ty ; Ramos, Laurence ; Ligoure, Christian ; Hachem, Elie ; Pereira, Anselmo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1069-353d8f55541f82b116e6ffdde8e191153d540a48b7951987d143396207ed065f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Ambient temperature</topic><topic>Cameras</topic><topic>Capillarity</topic><topic>Capillary flow</topic><topic>Dimensionless numbers</topic><topic>Energy transfer</topic><topic>Gravity</topic><topic>Inertia</topic><topic>JFM Papers</topic><topic>Levitation</topic><topic>Liquid nitrogen</topic><topic>Nitrogen</topic><topic>Scaling</topic><topic>Scaling laws</topic><topic>Shear flow</topic><topic>Spreading</topic><topic>Stresses</topic><topic>Three dimensional analysis</topic><topic>Two dimensional analysis</topic><topic>Vapors</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isukwem, Kindness</creatorcontrib><creatorcontrib>Charles, Carole-Ann</creatorcontrib><creatorcontrib>Phou, Ty</creatorcontrib><creatorcontrib>Ramos, Laurence</creatorcontrib><creatorcontrib>Ligoure, Christian</creatorcontrib><creatorcontrib>Hachem, Elie</creatorcontrib><creatorcontrib>Pereira, Anselmo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isukwem, Kindness</au><au>Charles, Carole-Ann</au><au>Phou, Ty</au><au>Ramos, Laurence</au><au>Ligoure, Christian</au><au>Hachem, Elie</au><au>Pereira, Anselmo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Leidenfrost impacting drops</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2025-01-10</date><risdate>2025</risdate><volume>1002</volume><artnum>A32</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We investigate the spreading of falling ambient-temperature Newtonian drops after their normal impact on a quartz plate covered with a thin layer of liquid nitrogen. As a drop expands, liquid nitrogen evaporates, generating a vapour film that maintains the drop in levitation. Consequently, the latter spreads in inverse Leidenfrost conditions. Three drop-spreading regimes are observed: (i) inertio-capillary, (ii) inertio-viscous, and (iii) inertio-viscous-capillary. In the first regime, although the drop expansion is essentially driven by a competition between inertial and capillary stresses, it is also affected by viscous effects emerging from the vapour film, which ultimately favours the development of a shear flow within the drop. Interestingly, vapour film effects become marginal in both the second and third regimes, allowing the drop to undergo biaxial extension primarily. More specifically, in the inertio-viscous scenario, the expansion is driven by the balance between inertial and biaxial extensional viscous stresses in the drop. Finally, inertia, capillarity and drop viscosity are all relevant in the third regime. These physical mechanisms are underlined through a mixed approach combining experiments with multiphase three-dimensional numerical simulations in light of spreading dynamics analyses, energy transfer and scaling laws. Our results are rationalized in a two-dimensional diagram linking the drops’ maximum expansion and spreading time with the observed spreading regimes through a single dimensionless parameter given by the square root of the capillary number (the ratio of the viscous stress to the capillary stress).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.1164</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6688-1013</orcidid><orcidid>https://orcid.org/0000-0003-3445-6826</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2025-01, Vol.1002, Article A32 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_3150998929 |
source | Cambridge Journals Online |
subjects | Ambient temperature Cameras Capillarity Capillary flow Dimensionless numbers Energy transfer Gravity Inertia JFM Papers Levitation Liquid nitrogen Nitrogen Scaling Scaling laws Shear flow Spreading Stresses Three dimensional analysis Two dimensional analysis Vapors Velocity Viscosity |
title | Inverse Leidenfrost impacting drops |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Leidenfrost%20impacting%20drops&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Isukwem,%20Kindness&rft.date=2025-01-10&rft.volume=1002&rft.artnum=A32&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.1164&rft_dat=%3Cproquest_cross%3E3150998929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1069-353d8f55541f82b116e6ffdde8e191153d540a48b7951987d143396207ed065f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3150998929&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_1164&rfr_iscdi=true |