Loading…
Hard Thresholding Hyperinterpolation Over General Regions
This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree n leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function thro...
Saved in:
Published in: | Journal of scientific computing 2025-02, Vol.102 (2), p.37, Article 37 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-b067210eaf4e48c788a1c211fe67b8294592bdb910909318e5af8a5868a87b443 |
container_end_page | |
container_issue | 2 |
container_start_page | 37 |
container_title | Journal of scientific computing |
container_volume | 102 |
creator | An, Congpei Ran, Jiashu |
description | This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree
n
leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function through a quadrature rule with algebraic exactness 2
n
. We prove that hard thresholding hyperinterpolation is the unique solution to an
ℓ
0
-regularized weighted discrete least squares approximation problem. Hard thresholding hyperinterpolation is not only idempotent and commutative with hyperinterpolation, but also adheres to the Pythagorean theorem in terms of the discrete (semi) inner product. By the estimate of the reciprocal of Christoffel function, we present the upper bound of the uniform norm of hard thresholding hyperinterpolation operator. Additionally, hard thresholding hyperinterpolation possesses denoising and basis selection abilities akin to Lasso hyperinterpolation. To judge the
L
2
errors of both hard thresholding and Lasso hyperinterpolations, we propose a criterion that integrates the regularization parameter with the product of noise coefficients and the signs of hyperinterpolation coefficients. Numerical examples on the sphere, the spherical triangle and the cube demonstrate the denoising ability of hard thresholding hyperinterpolation. |
doi_str_mv | 10.1007/s10915-024-02754-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3151293174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151293174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b067210eaf4e48c788a1c211fe67b8294592bdb910909318e5af8a5868a87b443</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKdfwKeCz9G7NGmSRxm6CYOBzOeQdteto7Y16YR9e7tV8M2H4-D4_-64H2P3CI8IoJ8igkXFQcihtJJcXrAJKp1ynVm8ZBMwRnEttbxmNzHuAcAaKybMLnzYJOtdoLhr603VbJPFsaNQNT2Frq19X7VNsvqmkMypoeDr5J22wyzesqvS15HufvuUfby-rGcLvlzN32bPS14IgJ7nkGmBQL6UJE2hjfFYCMSSMp0bYaWyIt_kdngAbIqGlC-NVyYz3uhcynTKHsa9XWi_DhR7t28PoRlOuhQVigHSp5QYU0VoYwxUui5Unz4cHYI7KXKjIjcocmdF7gSlIxSHcLOl8Lf6H-oHPPFn_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151293174</pqid></control><display><type>article</type><title>Hard Thresholding Hyperinterpolation Over General Regions</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>An, Congpei ; Ran, Jiashu</creator><creatorcontrib>An, Congpei ; Ran, Jiashu</creatorcontrib><description>This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree
n
leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function through a quadrature rule with algebraic exactness 2
n
. We prove that hard thresholding hyperinterpolation is the unique solution to an
ℓ
0
-regularized weighted discrete least squares approximation problem. Hard thresholding hyperinterpolation is not only idempotent and commutative with hyperinterpolation, but also adheres to the Pythagorean theorem in terms of the discrete (semi) inner product. By the estimate of the reciprocal of Christoffel function, we present the upper bound of the uniform norm of hard thresholding hyperinterpolation operator. Additionally, hard thresholding hyperinterpolation possesses denoising and basis selection abilities akin to Lasso hyperinterpolation. To judge the
L
2
errors of both hard thresholding and Lasso hyperinterpolations, we propose a criterion that integrates the regularization parameter with the product of noise coefficients and the signs of hyperinterpolation coefficients. Numerical examples on the sphere, the spherical triangle and the cube demonstrate the denoising ability of hard thresholding hyperinterpolation.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-024-02754-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Error analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Noise reduction ; Norms ; Operators (mathematics) ; Quadratures ; Regularization ; Theoretical ; Upper bounds</subject><ispartof>Journal of scientific computing, 2025-02, Vol.102 (2), p.37, Article 37</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Feb 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b067210eaf4e48c788a1c211fe67b8294592bdb910909318e5af8a5868a87b443</cites><orcidid>0009-0009-5015-9398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>An, Congpei</creatorcontrib><creatorcontrib>Ran, Jiashu</creatorcontrib><title>Hard Thresholding Hyperinterpolation Over General Regions</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree
n
leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function through a quadrature rule with algebraic exactness 2
n
. We prove that hard thresholding hyperinterpolation is the unique solution to an
ℓ
0
-regularized weighted discrete least squares approximation problem. Hard thresholding hyperinterpolation is not only idempotent and commutative with hyperinterpolation, but also adheres to the Pythagorean theorem in terms of the discrete (semi) inner product. By the estimate of the reciprocal of Christoffel function, we present the upper bound of the uniform norm of hard thresholding hyperinterpolation operator. Additionally, hard thresholding hyperinterpolation possesses denoising and basis selection abilities akin to Lasso hyperinterpolation. To judge the
L
2
errors of both hard thresholding and Lasso hyperinterpolations, we propose a criterion that integrates the regularization parameter with the product of noise coefficients and the signs of hyperinterpolation coefficients. Numerical examples on the sphere, the spherical triangle and the cube demonstrate the denoising ability of hard thresholding hyperinterpolation.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Error analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Noise reduction</subject><subject>Norms</subject><subject>Operators (mathematics)</subject><subject>Quadratures</subject><subject>Regularization</subject><subject>Theoretical</subject><subject>Upper bounds</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOKdfwKeCz9G7NGmSRxm6CYOBzOeQdteto7Y16YR9e7tV8M2H4-D4_-64H2P3CI8IoJ8igkXFQcihtJJcXrAJKp1ynVm8ZBMwRnEttbxmNzHuAcAaKybMLnzYJOtdoLhr603VbJPFsaNQNT2Frq19X7VNsvqmkMypoeDr5J22wyzesqvS15HufvuUfby-rGcLvlzN32bPS14IgJ7nkGmBQL6UJE2hjfFYCMSSMp0bYaWyIt_kdngAbIqGlC-NVyYz3uhcynTKHsa9XWi_DhR7t28PoRlOuhQVigHSp5QYU0VoYwxUui5Unz4cHYI7KXKjIjcocmdF7gSlIxSHcLOl8Lf6H-oHPPFn_A</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>An, Congpei</creator><creator>Ran, Jiashu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0009-0009-5015-9398</orcidid></search><sort><creationdate>20250201</creationdate><title>Hard Thresholding Hyperinterpolation Over General Regions</title><author>An, Congpei ; Ran, Jiashu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b067210eaf4e48c788a1c211fe67b8294592bdb910909318e5af8a5868a87b443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Error analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Noise reduction</topic><topic>Norms</topic><topic>Operators (mathematics)</topic><topic>Quadratures</topic><topic>Regularization</topic><topic>Theoretical</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Congpei</creatorcontrib><creatorcontrib>Ran, Jiashu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Congpei</au><au>Ran, Jiashu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hard Thresholding Hyperinterpolation Over General Regions</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>102</volume><issue>2</issue><spage>37</spage><pages>37-</pages><artnum>37</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree
n
leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function through a quadrature rule with algebraic exactness 2
n
. We prove that hard thresholding hyperinterpolation is the unique solution to an
ℓ
0
-regularized weighted discrete least squares approximation problem. Hard thresholding hyperinterpolation is not only idempotent and commutative with hyperinterpolation, but also adheres to the Pythagorean theorem in terms of the discrete (semi) inner product. By the estimate of the reciprocal of Christoffel function, we present the upper bound of the uniform norm of hard thresholding hyperinterpolation operator. Additionally, hard thresholding hyperinterpolation possesses denoising and basis selection abilities akin to Lasso hyperinterpolation. To judge the
L
2
errors of both hard thresholding and Lasso hyperinterpolations, we propose a criterion that integrates the regularization parameter with the product of noise coefficients and the signs of hyperinterpolation coefficients. Numerical examples on the sphere, the spherical triangle and the cube demonstrate the denoising ability of hard thresholding hyperinterpolation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-024-02754-4</doi><orcidid>https://orcid.org/0009-0009-5015-9398</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2025-02, Vol.102 (2), p.37, Article 37 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_3151293174 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algebra Algorithms Approximation Computational Mathematics and Numerical Analysis Error analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical functions Mathematics Mathematics and Statistics Noise reduction Norms Operators (mathematics) Quadratures Regularization Theoretical Upper bounds |
title | Hard Thresholding Hyperinterpolation Over General Regions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hard%20Thresholding%20Hyperinterpolation%20Over%20General%20Regions&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=An,%20Congpei&rft.date=2025-02-01&rft.volume=102&rft.issue=2&rft.spage=37&rft.pages=37-&rft.artnum=37&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-024-02754-4&rft_dat=%3Cproquest_cross%3E3151293174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-b067210eaf4e48c788a1c211fe67b8294592bdb910909318e5af8a5868a87b443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151293174&rft_id=info:pmid/&rfr_iscdi=true |