Loading…

Hard Thresholding Hyperinterpolation Over General Regions

This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree n leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function thro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2025-02, Vol.102 (2), p.37, Article 37
Main Authors: An, Congpei, Ran, Jiashu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-b067210eaf4e48c788a1c211fe67b8294592bdb910909318e5af8a5868a87b443
container_end_page
container_issue 2
container_start_page 37
container_title Journal of scientific computing
container_volume 102
creator An, Congpei
Ran, Jiashu
description This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree n leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function through a quadrature rule with algebraic exactness 2 n . We prove that hard thresholding hyperinterpolation is the unique solution to an ℓ 0 -regularized weighted discrete least squares approximation problem. Hard thresholding hyperinterpolation is not only idempotent and commutative with hyperinterpolation, but also adheres to the Pythagorean theorem in terms of the discrete (semi) inner product. By the estimate of the reciprocal of Christoffel function, we present the upper bound of the uniform norm of hard thresholding hyperinterpolation operator. Additionally, hard thresholding hyperinterpolation possesses denoising and basis selection abilities akin to Lasso hyperinterpolation. To judge the L 2 errors of both hard thresholding and Lasso hyperinterpolations, we propose a criterion that integrates the regularization parameter with the product of noise coefficients and the signs of hyperinterpolation coefficients. Numerical examples on the sphere, the spherical triangle and the cube demonstrate the denoising ability of hard thresholding hyperinterpolation.
doi_str_mv 10.1007/s10915-024-02754-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3151293174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151293174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b067210eaf4e48c788a1c211fe67b8294592bdb910909318e5af8a5868a87b443</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKdfwKeCz9G7NGmSRxm6CYOBzOeQdteto7Y16YR9e7tV8M2H4-D4_-64H2P3CI8IoJ8igkXFQcihtJJcXrAJKp1ynVm8ZBMwRnEttbxmNzHuAcAaKybMLnzYJOtdoLhr603VbJPFsaNQNT2Frq19X7VNsvqmkMypoeDr5J22wyzesqvS15HufvuUfby-rGcLvlzN32bPS14IgJ7nkGmBQL6UJE2hjfFYCMSSMp0bYaWyIt_kdngAbIqGlC-NVyYz3uhcynTKHsa9XWi_DhR7t28PoRlOuhQVigHSp5QYU0VoYwxUui5Unz4cHYI7KXKjIjcocmdF7gSlIxSHcLOl8Lf6H-oHPPFn_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151293174</pqid></control><display><type>article</type><title>Hard Thresholding Hyperinterpolation Over General Regions</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>An, Congpei ; Ran, Jiashu</creator><creatorcontrib>An, Congpei ; Ran, Jiashu</creatorcontrib><description>This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree n leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function through a quadrature rule with algebraic exactness 2 n . We prove that hard thresholding hyperinterpolation is the unique solution to an ℓ 0 -regularized weighted discrete least squares approximation problem. Hard thresholding hyperinterpolation is not only idempotent and commutative with hyperinterpolation, but also adheres to the Pythagorean theorem in terms of the discrete (semi) inner product. By the estimate of the reciprocal of Christoffel function, we present the upper bound of the uniform norm of hard thresholding hyperinterpolation operator. Additionally, hard thresholding hyperinterpolation possesses denoising and basis selection abilities akin to Lasso hyperinterpolation. To judge the L 2 errors of both hard thresholding and Lasso hyperinterpolations, we propose a criterion that integrates the regularization parameter with the product of noise coefficients and the signs of hyperinterpolation coefficients. Numerical examples on the sphere, the spherical triangle and the cube demonstrate the denoising ability of hard thresholding hyperinterpolation.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-024-02754-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Error analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Noise reduction ; Norms ; Operators (mathematics) ; Quadratures ; Regularization ; Theoretical ; Upper bounds</subject><ispartof>Journal of scientific computing, 2025-02, Vol.102 (2), p.37, Article 37</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Feb 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b067210eaf4e48c788a1c211fe67b8294592bdb910909318e5af8a5868a87b443</cites><orcidid>0009-0009-5015-9398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>An, Congpei</creatorcontrib><creatorcontrib>Ran, Jiashu</creatorcontrib><title>Hard Thresholding Hyperinterpolation Over General Regions</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree n leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function through a quadrature rule with algebraic exactness 2 n . We prove that hard thresholding hyperinterpolation is the unique solution to an ℓ 0 -regularized weighted discrete least squares approximation problem. Hard thresholding hyperinterpolation is not only idempotent and commutative with hyperinterpolation, but also adheres to the Pythagorean theorem in terms of the discrete (semi) inner product. By the estimate of the reciprocal of Christoffel function, we present the upper bound of the uniform norm of hard thresholding hyperinterpolation operator. Additionally, hard thresholding hyperinterpolation possesses denoising and basis selection abilities akin to Lasso hyperinterpolation. To judge the L 2 errors of both hard thresholding and Lasso hyperinterpolations, we propose a criterion that integrates the regularization parameter with the product of noise coefficients and the signs of hyperinterpolation coefficients. Numerical examples on the sphere, the spherical triangle and the cube demonstrate the denoising ability of hard thresholding hyperinterpolation.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Error analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Noise reduction</subject><subject>Norms</subject><subject>Operators (mathematics)</subject><subject>Quadratures</subject><subject>Regularization</subject><subject>Theoretical</subject><subject>Upper bounds</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOKdfwKeCz9G7NGmSRxm6CYOBzOeQdteto7Y16YR9e7tV8M2H4-D4_-64H2P3CI8IoJ8igkXFQcihtJJcXrAJKp1ynVm8ZBMwRnEttbxmNzHuAcAaKybMLnzYJOtdoLhr603VbJPFsaNQNT2Frq19X7VNsvqmkMypoeDr5J22wyzesqvS15HufvuUfby-rGcLvlzN32bPS14IgJ7nkGmBQL6UJE2hjfFYCMSSMp0bYaWyIt_kdngAbIqGlC-NVyYz3uhcynTKHsa9XWi_DhR7t28PoRlOuhQVigHSp5QYU0VoYwxUui5Unz4cHYI7KXKjIjcocmdF7gSlIxSHcLOl8Lf6H-oHPPFn_A</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>An, Congpei</creator><creator>Ran, Jiashu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0009-0009-5015-9398</orcidid></search><sort><creationdate>20250201</creationdate><title>Hard Thresholding Hyperinterpolation Over General Regions</title><author>An, Congpei ; Ran, Jiashu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b067210eaf4e48c788a1c211fe67b8294592bdb910909318e5af8a5868a87b443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Error analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Noise reduction</topic><topic>Norms</topic><topic>Operators (mathematics)</topic><topic>Quadratures</topic><topic>Regularization</topic><topic>Theoretical</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Congpei</creatorcontrib><creatorcontrib>Ran, Jiashu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Congpei</au><au>Ran, Jiashu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hard Thresholding Hyperinterpolation Over General Regions</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>102</volume><issue>2</issue><spage>37</spage><pages>37-</pages><artnum>37</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>This paper proposes a novel variant of hyperinterpolation, called hard thresholding hyperinterpolation. This approximation scheme of degree n leverages a hard thresholding operator to filter all hyperinterpolation coefficients, which approximate the Fourier coefficients of a continuous function through a quadrature rule with algebraic exactness 2 n . We prove that hard thresholding hyperinterpolation is the unique solution to an ℓ 0 -regularized weighted discrete least squares approximation problem. Hard thresholding hyperinterpolation is not only idempotent and commutative with hyperinterpolation, but also adheres to the Pythagorean theorem in terms of the discrete (semi) inner product. By the estimate of the reciprocal of Christoffel function, we present the upper bound of the uniform norm of hard thresholding hyperinterpolation operator. Additionally, hard thresholding hyperinterpolation possesses denoising and basis selection abilities akin to Lasso hyperinterpolation. To judge the L 2 errors of both hard thresholding and Lasso hyperinterpolations, we propose a criterion that integrates the regularization parameter with the product of noise coefficients and the signs of hyperinterpolation coefficients. Numerical examples on the sphere, the spherical triangle and the cube demonstrate the denoising ability of hard thresholding hyperinterpolation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-024-02754-4</doi><orcidid>https://orcid.org/0009-0009-5015-9398</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2025-02, Vol.102 (2), p.37, Article 37
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_3151293174
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algebra
Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Error analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical functions
Mathematics
Mathematics and Statistics
Noise reduction
Norms
Operators (mathematics)
Quadratures
Regularization
Theoretical
Upper bounds
title Hard Thresholding Hyperinterpolation Over General Regions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hard%20Thresholding%20Hyperinterpolation%20Over%20General%20Regions&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=An,%20Congpei&rft.date=2025-02-01&rft.volume=102&rft.issue=2&rft.spage=37&rft.pages=37-&rft.artnum=37&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-024-02754-4&rft_dat=%3Cproquest_cross%3E3151293174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-b067210eaf4e48c788a1c211fe67b8294592bdb910909318e5af8a5868a87b443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151293174&rft_id=info:pmid/&rfr_iscdi=true