Loading…

Theoretical Analysis, Simulation and Optimization of Electric Field on the Three-Phase Electrodynamic Screen

In order to harness the abundant solar radiation, huge extent of solar panels have been installed in inhospitable desert terrains in many parts of the world. However, the inevitable accumulation of dust on solar panel naturally deteriorates the photovoltaic performance, by significantly reducing the...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal for science and engineering (2011) 2025, Vol.50 (1), p.597-610
Main Authors: Baqraf, Saeed A., Gondal, Mohammed A., Dastageer, Mohamed. A., Rao, Saleem, Al-Aswad, Abdulaziz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to harness the abundant solar radiation, huge extent of solar panels have been installed in inhospitable desert terrains in many parts of the world. However, the inevitable accumulation of dust on solar panel naturally deteriorates the photovoltaic performance, by significantly reducing the light transmittance to the device. There are many practical difficulties in employing conventional methods of dust mitigation, as it necessitates huge equipment, a large quantity of water, electricity and manpower to be made available in hostile and remote deserts. In order to circumvent this problem, different variants of self-powered, unmanned, automatic electrodynamic dust repulsion system have been developed and used in the solar panels. The effectiveness of such electrodynamic dust repulsion systems depends on the optimum distribution of electric field on and in between the interdigitated electrodes of the electrodynamic dust repulsion shield (EDS). This work presents the theoretical model to optimize the electric field and electric field distribution in the three-phase AC source-driven EDS system. This model is based on the solution of Laplace equation for the spatially periodic potential present in the electrode system, and it is simulated using COMSOL Multiphysics® software and the Wolfram Mathematica® program for different combinations of electrode voltage in one cycle. Moreover, the parametric dependence of the average electric field on EDS as a function of electrode geometry, dielectric constant, and the thickness of the dielectric coating was also theoretically investigated.
ISSN:2193-567X
1319-8025
2191-4281
DOI:10.1007/s13369-024-09535-z