Loading…

Suppressing the vdW Gap‐Induced Tunneling Barrier by Constructing Interfacial Covalent Bonds in 2D Metal–Semiconductor Contacts

2D metal and semiconductor materials provide a promising solution to realize Ohmic contacts by suppressing the strong Fermi level pinning (FLP) effect due to without dangling bonds. However, the 2D metal‐semiconductor Van der Waals (vdW) interfaces induce an inevitable tunnel barrier, significantly...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2025-01, Vol.35 (2), p.n/a
Main Authors: Shan, Wenchao, Shi, Anqi, Xin, Zhengyang, Zhang, Xiuyun, Wang, Bing, Li, Yongtao, Niu, Xianghong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2023-aae1707e2f6ac827fa8947c297828d768cf2f08a109d1398a0a85efb097e7c4b3
container_end_page n/a
container_issue 2
container_start_page
container_title Advanced functional materials
container_volume 35
creator Shan, Wenchao
Shi, Anqi
Xin, Zhengyang
Zhang, Xiuyun
Wang, Bing
Li, Yongtao
Niu, Xianghong
description 2D metal and semiconductor materials provide a promising solution to realize Ohmic contacts by suppressing the strong Fermi level pinning (FLP) effect due to without dangling bonds. However, the 2D metal‐semiconductor Van der Waals (vdW) interfaces induce an inevitable tunnel barrier, significantly restraining the injection of charge carriers into the conduction channel. Herein, by replacing the vdW bond with the covalent bond in interfaces, the Ohmic and tunneling‐barrier‐inhibition contacts are realized simultaneously based on the 2D XSi2N4 (X = Cr, Hf, Mo, Ti, V, Zr) semiconductor and the 2D Mxene metal family. Taking 60 2D Mxene‐XSi2N4 contacts as examples, although the vdW‐type contacts exhibit Ohmic contacts, the tunneling probability (PTB) can be as low as 0.4%, while the PTB can increase to 88.09% by removing the Mxene terminations at the adjacent interface to form the covalent bond. The weak FLP and Ohmic contacts are retained at covalent bond interfaces since the outlying Si─N sublayer protects the band‐edge electronic states of XSi2N4 semiconductors. This work provides a straightforward strategy for advancing high‐performance and energy‐efficient 2D electronic nanodevices. Although 2D metal and semiconductor materials provide a promising solution to realize ohmic contacts, the additional van der Waals (vdW) gap inevitably induces a large tunneling barrier, significantly restraining the charge transport. By effectively replacing the vdW bond with the covalent bond at 2D interfaces, weakening the tunneling barrier and realizing Ohmic contacts can be achieved simultaneously.
doi_str_mv 10.1002/adfm.202412773
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3152859243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152859243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2023-aae1707e2f6ac827fa8947c297828d768cf2f08a109d1398a0a85efb097e7c4b3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEs8ta0usU2wnrZ1lHxQqgVgAgl00dcaQKnWC7RR1h8QPIPGHfAmJisqS1Yxmzr2juYScctbjjIlzyM2yJ5hIuJAy3iEHfMAHUcyE2t32_GmfHHq_YIy3THJAPu6aunbofWGfaXhBusof6SXU3--fM5s3GnN631iLZbcfgXMFOjpf03FlfXCNDt18ZgM6A7qAsl2soEQb6KiyuaeFpWJCbzBA-f3-dYfLQledb6hc5xFAB39M9gyUHk9-6xF5mF7cj6-i69vL2Xh4Hen2qzgCQC6ZRGEGoJWQBlSaSC1SqYTK5UBpIwxTwFma8zhVwED10cxZKlHqZB4fkbONb-2q1wZ9yBZV42x7Mot5X6h-KpK4pXobSrvKe4cmq12xBLfOOMu6oLMu6GwbdCtIN4K3osT1P3Q2nExv_rQ_hPKFhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152859243</pqid></control><display><type>article</type><title>Suppressing the vdW Gap‐Induced Tunneling Barrier by Constructing Interfacial Covalent Bonds in 2D Metal–Semiconductor Contacts</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shan, Wenchao ; Shi, Anqi ; Xin, Zhengyang ; Zhang, Xiuyun ; Wang, Bing ; Li, Yongtao ; Niu, Xianghong</creator><creatorcontrib>Shan, Wenchao ; Shi, Anqi ; Xin, Zhengyang ; Zhang, Xiuyun ; Wang, Bing ; Li, Yongtao ; Niu, Xianghong</creatorcontrib><description>2D metal and semiconductor materials provide a promising solution to realize Ohmic contacts by suppressing the strong Fermi level pinning (FLP) effect due to without dangling bonds. However, the 2D metal‐semiconductor Van der Waals (vdW) interfaces induce an inevitable tunnel barrier, significantly restraining the injection of charge carriers into the conduction channel. Herein, by replacing the vdW bond with the covalent bond in interfaces, the Ohmic and tunneling‐barrier‐inhibition contacts are realized simultaneously based on the 2D XSi2N4 (X = Cr, Hf, Mo, Ti, V, Zr) semiconductor and the 2D Mxene metal family. Taking 60 2D Mxene‐XSi2N4 contacts as examples, although the vdW‐type contacts exhibit Ohmic contacts, the tunneling probability (PTB) can be as low as 0.4%, while the PTB can increase to 88.09% by removing the Mxene terminations at the adjacent interface to form the covalent bond. The weak FLP and Ohmic contacts are retained at covalent bond interfaces since the outlying Si─N sublayer protects the band‐edge electronic states of XSi2N4 semiconductors. This work provides a straightforward strategy for advancing high‐performance and energy‐efficient 2D electronic nanodevices. Although 2D metal and semiconductor materials provide a promising solution to realize ohmic contacts, the additional van der Waals (vdW) gap inevitably induces a large tunneling barrier, significantly restraining the charge transport. By effectively replacing the vdW bond with the covalent bond at 2D interfaces, weakening the tunneling barrier and realizing Ohmic contacts can be achieved simultaneously.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202412773</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D material ; Chemical bonds ; Contact resistance ; Covalence ; Covalent bonds ; Current carriers ; density functional theorymetal‐semiconductor contacts ; Electron states ; Nanotechnology devices ; Schottky barrier ; Semiconductor materials ; Semiconductors ; Tunnel construction ; tunneling‐barrier ; Two dimensional materials ; Zirconium</subject><ispartof>Advanced functional materials, 2025-01, Vol.35 (2), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2025 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2023-aae1707e2f6ac827fa8947c297828d768cf2f08a109d1398a0a85efb097e7c4b3</cites><orcidid>0000-0001-6475-8839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Shan, Wenchao</creatorcontrib><creatorcontrib>Shi, Anqi</creatorcontrib><creatorcontrib>Xin, Zhengyang</creatorcontrib><creatorcontrib>Zhang, Xiuyun</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Li, Yongtao</creatorcontrib><creatorcontrib>Niu, Xianghong</creatorcontrib><title>Suppressing the vdW Gap‐Induced Tunneling Barrier by Constructing Interfacial Covalent Bonds in 2D Metal–Semiconductor Contacts</title><title>Advanced functional materials</title><description>2D metal and semiconductor materials provide a promising solution to realize Ohmic contacts by suppressing the strong Fermi level pinning (FLP) effect due to without dangling bonds. However, the 2D metal‐semiconductor Van der Waals (vdW) interfaces induce an inevitable tunnel barrier, significantly restraining the injection of charge carriers into the conduction channel. Herein, by replacing the vdW bond with the covalent bond in interfaces, the Ohmic and tunneling‐barrier‐inhibition contacts are realized simultaneously based on the 2D XSi2N4 (X = Cr, Hf, Mo, Ti, V, Zr) semiconductor and the 2D Mxene metal family. Taking 60 2D Mxene‐XSi2N4 contacts as examples, although the vdW‐type contacts exhibit Ohmic contacts, the tunneling probability (PTB) can be as low as 0.4%, while the PTB can increase to 88.09% by removing the Mxene terminations at the adjacent interface to form the covalent bond. The weak FLP and Ohmic contacts are retained at covalent bond interfaces since the outlying Si─N sublayer protects the band‐edge electronic states of XSi2N4 semiconductors. This work provides a straightforward strategy for advancing high‐performance and energy‐efficient 2D electronic nanodevices. Although 2D metal and semiconductor materials provide a promising solution to realize ohmic contacts, the additional van der Waals (vdW) gap inevitably induces a large tunneling barrier, significantly restraining the charge transport. By effectively replacing the vdW bond with the covalent bond at 2D interfaces, weakening the tunneling barrier and realizing Ohmic contacts can be achieved simultaneously.</description><subject>2D material</subject><subject>Chemical bonds</subject><subject>Contact resistance</subject><subject>Covalence</subject><subject>Covalent bonds</subject><subject>Current carriers</subject><subject>density functional theorymetal‐semiconductor contacts</subject><subject>Electron states</subject><subject>Nanotechnology devices</subject><subject>Schottky barrier</subject><subject>Semiconductor materials</subject><subject>Semiconductors</subject><subject>Tunnel construction</subject><subject>tunneling‐barrier</subject><subject>Two dimensional materials</subject><subject>Zirconium</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEs8ta0usU2wnrZ1lHxQqgVgAgl00dcaQKnWC7RR1h8QPIPGHfAmJisqS1Yxmzr2juYScctbjjIlzyM2yJ5hIuJAy3iEHfMAHUcyE2t32_GmfHHq_YIy3THJAPu6aunbofWGfaXhBusof6SXU3--fM5s3GnN631iLZbcfgXMFOjpf03FlfXCNDt18ZgM6A7qAsl2soEQb6KiyuaeFpWJCbzBA-f3-dYfLQledb6hc5xFAB39M9gyUHk9-6xF5mF7cj6-i69vL2Xh4Hen2qzgCQC6ZRGEGoJWQBlSaSC1SqYTK5UBpIwxTwFma8zhVwED10cxZKlHqZB4fkbONb-2q1wZ9yBZV42x7Mot5X6h-KpK4pXobSrvKe4cmq12xBLfOOMu6oLMu6GwbdCtIN4K3osT1P3Q2nExv_rQ_hPKFhQ</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Shan, Wenchao</creator><creator>Shi, Anqi</creator><creator>Xin, Zhengyang</creator><creator>Zhang, Xiuyun</creator><creator>Wang, Bing</creator><creator>Li, Yongtao</creator><creator>Niu, Xianghong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6475-8839</orcidid></search><sort><creationdate>20250101</creationdate><title>Suppressing the vdW Gap‐Induced Tunneling Barrier by Constructing Interfacial Covalent Bonds in 2D Metal–Semiconductor Contacts</title><author>Shan, Wenchao ; Shi, Anqi ; Xin, Zhengyang ; Zhang, Xiuyun ; Wang, Bing ; Li, Yongtao ; Niu, Xianghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2023-aae1707e2f6ac827fa8947c297828d768cf2f08a109d1398a0a85efb097e7c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>2D material</topic><topic>Chemical bonds</topic><topic>Contact resistance</topic><topic>Covalence</topic><topic>Covalent bonds</topic><topic>Current carriers</topic><topic>density functional theorymetal‐semiconductor contacts</topic><topic>Electron states</topic><topic>Nanotechnology devices</topic><topic>Schottky barrier</topic><topic>Semiconductor materials</topic><topic>Semiconductors</topic><topic>Tunnel construction</topic><topic>tunneling‐barrier</topic><topic>Two dimensional materials</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Wenchao</creatorcontrib><creatorcontrib>Shi, Anqi</creatorcontrib><creatorcontrib>Xin, Zhengyang</creatorcontrib><creatorcontrib>Zhang, Xiuyun</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Li, Yongtao</creatorcontrib><creatorcontrib>Niu, Xianghong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Wenchao</au><au>Shi, Anqi</au><au>Xin, Zhengyang</au><au>Zhang, Xiuyun</au><au>Wang, Bing</au><au>Li, Yongtao</au><au>Niu, Xianghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressing the vdW Gap‐Induced Tunneling Barrier by Constructing Interfacial Covalent Bonds in 2D Metal–Semiconductor Contacts</atitle><jtitle>Advanced functional materials</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>35</volume><issue>2</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>2D metal and semiconductor materials provide a promising solution to realize Ohmic contacts by suppressing the strong Fermi level pinning (FLP) effect due to without dangling bonds. However, the 2D metal‐semiconductor Van der Waals (vdW) interfaces induce an inevitable tunnel barrier, significantly restraining the injection of charge carriers into the conduction channel. Herein, by replacing the vdW bond with the covalent bond in interfaces, the Ohmic and tunneling‐barrier‐inhibition contacts are realized simultaneously based on the 2D XSi2N4 (X = Cr, Hf, Mo, Ti, V, Zr) semiconductor and the 2D Mxene metal family. Taking 60 2D Mxene‐XSi2N4 contacts as examples, although the vdW‐type contacts exhibit Ohmic contacts, the tunneling probability (PTB) can be as low as 0.4%, while the PTB can increase to 88.09% by removing the Mxene terminations at the adjacent interface to form the covalent bond. The weak FLP and Ohmic contacts are retained at covalent bond interfaces since the outlying Si─N sublayer protects the band‐edge electronic states of XSi2N4 semiconductors. This work provides a straightforward strategy for advancing high‐performance and energy‐efficient 2D electronic nanodevices. Although 2D metal and semiconductor materials provide a promising solution to realize ohmic contacts, the additional van der Waals (vdW) gap inevitably induces a large tunneling barrier, significantly restraining the charge transport. By effectively replacing the vdW bond with the covalent bond at 2D interfaces, weakening the tunneling barrier and realizing Ohmic contacts can be achieved simultaneously.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202412773</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6475-8839</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2025-01, Vol.35 (2), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3152859243
source Wiley-Blackwell Read & Publish Collection
subjects 2D material
Chemical bonds
Contact resistance
Covalence
Covalent bonds
Current carriers
density functional theorymetal‐semiconductor contacts
Electron states
Nanotechnology devices
Schottky barrier
Semiconductor materials
Semiconductors
Tunnel construction
tunneling‐barrier
Two dimensional materials
Zirconium
title Suppressing the vdW Gap‐Induced Tunneling Barrier by Constructing Interfacial Covalent Bonds in 2D Metal–Semiconductor Contacts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressing%20the%20vdW%20Gap%E2%80%90Induced%20Tunneling%20Barrier%20by%20Constructing%20Interfacial%20Covalent%20Bonds%20in%202D%20Metal%E2%80%93Semiconductor%20Contacts&rft.jtitle=Advanced%20functional%20materials&rft.au=Shan,%20Wenchao&rft.date=2025-01-01&rft.volume=35&rft.issue=2&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202412773&rft_dat=%3Cproquest_cross%3E3152859243%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2023-aae1707e2f6ac827fa8947c297828d768cf2f08a109d1398a0a85efb097e7c4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3152859243&rft_id=info:pmid/&rfr_iscdi=true