Loading…

Target‐Templated Construction of Functional Proteomimetics Using Photo‐Foldamer Libraries

Current methods for proteomimetic engineering rely on structure‐based design. Here we describe a design strategy that allows the construction of proteomimetics against challenging targets without a priori characterization of the target surface. Our approach employs (i) a 100‐membered photoreactive f...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2025-01, Vol.137 (2), p.n/a
Main Authors: Wéber, Edit, Ábrányi‐Balogh, Péter, Nagymihály, Bence, Menyhárd, Dóra K., Péczka, Nikolett, Gadanecz, Márton, Schlosser, Gitta, Orgován, Zoltán, Bogár, Ferenc, Bajusz, Dávid, Kecskeméti, Gábor, Szabó, Zoltán, Bartus, Éva, Tököli, Attila, Tóth, Gábor K., Szalai, Tibor V., Takács, Tamás, Araujo, Elvin, Buday, László, Perczel, András, Martinek, Tamás A., Keserű, György M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1175-6df5341f0d2a7b8e210d5ff1ad335f611c07397bf7c07fcc3a0ce6d4f4f6915e3
container_end_page n/a
container_issue 2
container_start_page
container_title Angewandte Chemie
container_volume 137
creator Wéber, Edit
Ábrányi‐Balogh, Péter
Nagymihály, Bence
Menyhárd, Dóra K.
Péczka, Nikolett
Gadanecz, Márton
Schlosser, Gitta
Orgován, Zoltán
Bogár, Ferenc
Bajusz, Dávid
Kecskeméti, Gábor
Szabó, Zoltán
Bartus, Éva
Tököli, Attila
Tóth, Gábor K.
Szalai, Tibor V.
Takács, Tamás
Araujo, Elvin
Buday, László
Perczel, András
Martinek, Tamás A.
Keserű, György M.
description Current methods for proteomimetic engineering rely on structure‐based design. Here we describe a design strategy that allows the construction of proteomimetics against challenging targets without a priori characterization of the target surface. Our approach employs (i) a 100‐membered photoreactive foldamer library, the members of which act as local surface mimetics, and (ii) the subsequent affinity maturation of the primary hits using systems chemistry. Two surface‐oriented proteinogenic side chains drove the interactions between the short helical foldamer fragments and the proteins. Diazirine‐based photo‐crosslinking was applied to sensitively detect and localize binding even to shallow and dynamic patches on representatively difficult targets. Photo‐foldamers identified functionally relevant protein interfaces, allosteric and previously unexplored targetable regions on the surface of STAT3 and an oncogenic K‐Ras variant. Target‐templated dynamic linking of foldamer hits resulted in two orders of magnitude affinity improvement in a single step. The dimeric K‐Ras ligand mimicked protein‐like catalytic functions. The photo‐foldamer approach thus enables the highly efficient mapping of protein‐protein interaction sites and provides a viable starting point for proteomimetic ligand development without a priori structural hypotheses. Expedient generation of functional proteomimetics was achieved without relying on any a priori structural hypotheses concerning target binding. A 100‐membered photoreactive local surface mimetic foldamer library mapped the challenging protein targets, yielding the primary hits. From these building blocks, a dynamic covalent selection based affinity amplification was achieved by hit‐ligation.
doi_str_mv 10.1002/ange.202410435
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3154028791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154028791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1175-6df5341f0d2a7b8e210d5ff1ad335f611c07397bf7c07fcc3a0ce6d4f4f6915e3</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhRujiYhuXU_ievD2b8osCQE0IcoClqYpnRZLZqbYlhh3PoLP6JM4iNGlq3sW33dycxC6xjDAAORWtRszIEAYBkb5CephTnBOBRenqAfAWD4krDxHFzFuAaAgouyhp6UKG5M-3z-WptnVKpkqG_s2prDXyfk28zab7tvvrOpsEXwyvnGNSU7HbBVdu8kWzz75rmHq60o1JmRztw4qOBMv0ZlVdTRXP7ePVtPJcnyXzx9n9-PRPNcYC54XleWUYQsVUWI9NARDxa3FqqKU2wJjDYKWYm1FF6zWVIE2RcUss0WJuaF9dHPs3QX_sjcxya3fh-7hKCnmDMhQlLijBkdKBx9jMFbugmtUeJMY5GFCeZhQ_k7YCeVReHW1efuHlqOH2eTP_QLn7ni7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154028791</pqid></control><display><type>article</type><title>Target‐Templated Construction of Functional Proteomimetics Using Photo‐Foldamer Libraries</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wéber, Edit ; Ábrányi‐Balogh, Péter ; Nagymihály, Bence ; Menyhárd, Dóra K. ; Péczka, Nikolett ; Gadanecz, Márton ; Schlosser, Gitta ; Orgován, Zoltán ; Bogár, Ferenc ; Bajusz, Dávid ; Kecskeméti, Gábor ; Szabó, Zoltán ; Bartus, Éva ; Tököli, Attila ; Tóth, Gábor K. ; Szalai, Tibor V. ; Takács, Tamás ; Araujo, Elvin ; Buday, László ; Perczel, András ; Martinek, Tamás A. ; Keserű, György M.</creator><creatorcontrib>Wéber, Edit ; Ábrányi‐Balogh, Péter ; Nagymihály, Bence ; Menyhárd, Dóra K. ; Péczka, Nikolett ; Gadanecz, Márton ; Schlosser, Gitta ; Orgován, Zoltán ; Bogár, Ferenc ; Bajusz, Dávid ; Kecskeméti, Gábor ; Szabó, Zoltán ; Bartus, Éva ; Tököli, Attila ; Tóth, Gábor K. ; Szalai, Tibor V. ; Takács, Tamás ; Araujo, Elvin ; Buday, László ; Perczel, András ; Martinek, Tamás A. ; Keserű, György M.</creatorcontrib><description>Current methods for proteomimetic engineering rely on structure‐based design. Here we describe a design strategy that allows the construction of proteomimetics against challenging targets without a priori characterization of the target surface. Our approach employs (i) a 100‐membered photoreactive foldamer library, the members of which act as local surface mimetics, and (ii) the subsequent affinity maturation of the primary hits using systems chemistry. Two surface‐oriented proteinogenic side chains drove the interactions between the short helical foldamer fragments and the proteins. Diazirine‐based photo‐crosslinking was applied to sensitively detect and localize binding even to shallow and dynamic patches on representatively difficult targets. Photo‐foldamers identified functionally relevant protein interfaces, allosteric and previously unexplored targetable regions on the surface of STAT3 and an oncogenic K‐Ras variant. Target‐templated dynamic linking of foldamer hits resulted in two orders of magnitude affinity improvement in a single step. The dimeric K‐Ras ligand mimicked protein‐like catalytic functions. The photo‐foldamer approach thus enables the highly efficient mapping of protein‐protein interaction sites and provides a viable starting point for proteomimetic ligand development without a priori structural hypotheses. Expedient generation of functional proteomimetics was achieved without relying on any a priori structural hypotheses concerning target binding. A 100‐membered photoreactive local surface mimetic foldamer library mapped the challenging protein targets, yielding the primary hits. From these building blocks, a dynamic covalent selection based affinity amplification was achieved by hit‐ligation.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202410435</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Allosteric properties ; Crosslinking ; foldamer ; fragment screening ; Ligands ; Peptide mapping ; photoaffinity labeling ; protein design ; protein-protein interaction ; Proteins ; Stat3 protein ; Structural analysis ; Target detection</subject><ispartof>Angewandte Chemie, 2025-01, Vol.137 (2), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1175-6df5341f0d2a7b8e210d5ff1ad335f611c07397bf7c07fcc3a0ce6d4f4f6915e3</cites><orcidid>0000-0003-1039-7809 ; 0000-0003-3518-5757 ; 0000-0003-1252-6416 ; 0000-0003-4277-9481 ; 0000-0001-9976-6978 ; 0009-0000-4088-3117 ; 0000-0003-0716-2830 ; 0000-0003-3168-8066 ; 0000-0002-7637-7133 ; 0000-0002-5904-0619 ; 0000-0002-0095-5531 ; 0000-0002-5584-6869 ; 0000-0001-8278-8038 ; 0000-0002-9284-5160 ; 0000-0002-0611-1452 ; 0009-0009-8076-7597 ; 0000-0002-3604-4385 ; 0000-0001-8413-3182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wéber, Edit</creatorcontrib><creatorcontrib>Ábrányi‐Balogh, Péter</creatorcontrib><creatorcontrib>Nagymihály, Bence</creatorcontrib><creatorcontrib>Menyhárd, Dóra K.</creatorcontrib><creatorcontrib>Péczka, Nikolett</creatorcontrib><creatorcontrib>Gadanecz, Márton</creatorcontrib><creatorcontrib>Schlosser, Gitta</creatorcontrib><creatorcontrib>Orgován, Zoltán</creatorcontrib><creatorcontrib>Bogár, Ferenc</creatorcontrib><creatorcontrib>Bajusz, Dávid</creatorcontrib><creatorcontrib>Kecskeméti, Gábor</creatorcontrib><creatorcontrib>Szabó, Zoltán</creatorcontrib><creatorcontrib>Bartus, Éva</creatorcontrib><creatorcontrib>Tököli, Attila</creatorcontrib><creatorcontrib>Tóth, Gábor K.</creatorcontrib><creatorcontrib>Szalai, Tibor V.</creatorcontrib><creatorcontrib>Takács, Tamás</creatorcontrib><creatorcontrib>Araujo, Elvin</creatorcontrib><creatorcontrib>Buday, László</creatorcontrib><creatorcontrib>Perczel, András</creatorcontrib><creatorcontrib>Martinek, Tamás A.</creatorcontrib><creatorcontrib>Keserű, György M.</creatorcontrib><title>Target‐Templated Construction of Functional Proteomimetics Using Photo‐Foldamer Libraries</title><title>Angewandte Chemie</title><description>Current methods for proteomimetic engineering rely on structure‐based design. Here we describe a design strategy that allows the construction of proteomimetics against challenging targets without a priori characterization of the target surface. Our approach employs (i) a 100‐membered photoreactive foldamer library, the members of which act as local surface mimetics, and (ii) the subsequent affinity maturation of the primary hits using systems chemistry. Two surface‐oriented proteinogenic side chains drove the interactions between the short helical foldamer fragments and the proteins. Diazirine‐based photo‐crosslinking was applied to sensitively detect and localize binding even to shallow and dynamic patches on representatively difficult targets. Photo‐foldamers identified functionally relevant protein interfaces, allosteric and previously unexplored targetable regions on the surface of STAT3 and an oncogenic K‐Ras variant. Target‐templated dynamic linking of foldamer hits resulted in two orders of magnitude affinity improvement in a single step. The dimeric K‐Ras ligand mimicked protein‐like catalytic functions. The photo‐foldamer approach thus enables the highly efficient mapping of protein‐protein interaction sites and provides a viable starting point for proteomimetic ligand development without a priori structural hypotheses. Expedient generation of functional proteomimetics was achieved without relying on any a priori structural hypotheses concerning target binding. A 100‐membered photoreactive local surface mimetic foldamer library mapped the challenging protein targets, yielding the primary hits. From these building blocks, a dynamic covalent selection based affinity amplification was achieved by hit‐ligation.</description><subject>Affinity</subject><subject>Allosteric properties</subject><subject>Crosslinking</subject><subject>foldamer</subject><subject>fragment screening</subject><subject>Ligands</subject><subject>Peptide mapping</subject><subject>photoaffinity labeling</subject><subject>protein design</subject><subject>protein-protein interaction</subject><subject>Proteins</subject><subject>Stat3 protein</subject><subject>Structural analysis</subject><subject>Target detection</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1OAjEUhRujiYhuXU_ievD2b8osCQE0IcoClqYpnRZLZqbYlhh3PoLP6JM4iNGlq3sW33dycxC6xjDAAORWtRszIEAYBkb5CephTnBOBRenqAfAWD4krDxHFzFuAaAgouyhp6UKG5M-3z-WptnVKpkqG_s2prDXyfk28zab7tvvrOpsEXwyvnGNSU7HbBVdu8kWzz75rmHq60o1JmRztw4qOBMv0ZlVdTRXP7ePVtPJcnyXzx9n9-PRPNcYC54XleWUYQsVUWI9NARDxa3FqqKU2wJjDYKWYm1FF6zWVIE2RcUss0WJuaF9dHPs3QX_sjcxya3fh-7hKCnmDMhQlLijBkdKBx9jMFbugmtUeJMY5GFCeZhQ_k7YCeVReHW1efuHlqOH2eTP_QLn7ni7</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Wéber, Edit</creator><creator>Ábrányi‐Balogh, Péter</creator><creator>Nagymihály, Bence</creator><creator>Menyhárd, Dóra K.</creator><creator>Péczka, Nikolett</creator><creator>Gadanecz, Márton</creator><creator>Schlosser, Gitta</creator><creator>Orgován, Zoltán</creator><creator>Bogár, Ferenc</creator><creator>Bajusz, Dávid</creator><creator>Kecskeméti, Gábor</creator><creator>Szabó, Zoltán</creator><creator>Bartus, Éva</creator><creator>Tököli, Attila</creator><creator>Tóth, Gábor K.</creator><creator>Szalai, Tibor V.</creator><creator>Takács, Tamás</creator><creator>Araujo, Elvin</creator><creator>Buday, László</creator><creator>Perczel, András</creator><creator>Martinek, Tamás A.</creator><creator>Keserű, György M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1039-7809</orcidid><orcidid>https://orcid.org/0000-0003-3518-5757</orcidid><orcidid>https://orcid.org/0000-0003-1252-6416</orcidid><orcidid>https://orcid.org/0000-0003-4277-9481</orcidid><orcidid>https://orcid.org/0000-0001-9976-6978</orcidid><orcidid>https://orcid.org/0009-0000-4088-3117</orcidid><orcidid>https://orcid.org/0000-0003-0716-2830</orcidid><orcidid>https://orcid.org/0000-0003-3168-8066</orcidid><orcidid>https://orcid.org/0000-0002-7637-7133</orcidid><orcidid>https://orcid.org/0000-0002-5904-0619</orcidid><orcidid>https://orcid.org/0000-0002-0095-5531</orcidid><orcidid>https://orcid.org/0000-0002-5584-6869</orcidid><orcidid>https://orcid.org/0000-0001-8278-8038</orcidid><orcidid>https://orcid.org/0000-0002-9284-5160</orcidid><orcidid>https://orcid.org/0000-0002-0611-1452</orcidid><orcidid>https://orcid.org/0009-0009-8076-7597</orcidid><orcidid>https://orcid.org/0000-0002-3604-4385</orcidid><orcidid>https://orcid.org/0000-0001-8413-3182</orcidid></search><sort><creationdate>20250110</creationdate><title>Target‐Templated Construction of Functional Proteomimetics Using Photo‐Foldamer Libraries</title><author>Wéber, Edit ; Ábrányi‐Balogh, Péter ; Nagymihály, Bence ; Menyhárd, Dóra K. ; Péczka, Nikolett ; Gadanecz, Márton ; Schlosser, Gitta ; Orgován, Zoltán ; Bogár, Ferenc ; Bajusz, Dávid ; Kecskeméti, Gábor ; Szabó, Zoltán ; Bartus, Éva ; Tököli, Attila ; Tóth, Gábor K. ; Szalai, Tibor V. ; Takács, Tamás ; Araujo, Elvin ; Buday, László ; Perczel, András ; Martinek, Tamás A. ; Keserű, György M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1175-6df5341f0d2a7b8e210d5ff1ad335f611c07397bf7c07fcc3a0ce6d4f4f6915e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Affinity</topic><topic>Allosteric properties</topic><topic>Crosslinking</topic><topic>foldamer</topic><topic>fragment screening</topic><topic>Ligands</topic><topic>Peptide mapping</topic><topic>photoaffinity labeling</topic><topic>protein design</topic><topic>protein-protein interaction</topic><topic>Proteins</topic><topic>Stat3 protein</topic><topic>Structural analysis</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wéber, Edit</creatorcontrib><creatorcontrib>Ábrányi‐Balogh, Péter</creatorcontrib><creatorcontrib>Nagymihály, Bence</creatorcontrib><creatorcontrib>Menyhárd, Dóra K.</creatorcontrib><creatorcontrib>Péczka, Nikolett</creatorcontrib><creatorcontrib>Gadanecz, Márton</creatorcontrib><creatorcontrib>Schlosser, Gitta</creatorcontrib><creatorcontrib>Orgován, Zoltán</creatorcontrib><creatorcontrib>Bogár, Ferenc</creatorcontrib><creatorcontrib>Bajusz, Dávid</creatorcontrib><creatorcontrib>Kecskeméti, Gábor</creatorcontrib><creatorcontrib>Szabó, Zoltán</creatorcontrib><creatorcontrib>Bartus, Éva</creatorcontrib><creatorcontrib>Tököli, Attila</creatorcontrib><creatorcontrib>Tóth, Gábor K.</creatorcontrib><creatorcontrib>Szalai, Tibor V.</creatorcontrib><creatorcontrib>Takács, Tamás</creatorcontrib><creatorcontrib>Araujo, Elvin</creatorcontrib><creatorcontrib>Buday, László</creatorcontrib><creatorcontrib>Perczel, András</creatorcontrib><creatorcontrib>Martinek, Tamás A.</creatorcontrib><creatorcontrib>Keserű, György M.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wéber, Edit</au><au>Ábrányi‐Balogh, Péter</au><au>Nagymihály, Bence</au><au>Menyhárd, Dóra K.</au><au>Péczka, Nikolett</au><au>Gadanecz, Márton</au><au>Schlosser, Gitta</au><au>Orgován, Zoltán</au><au>Bogár, Ferenc</au><au>Bajusz, Dávid</au><au>Kecskeméti, Gábor</au><au>Szabó, Zoltán</au><au>Bartus, Éva</au><au>Tököli, Attila</au><au>Tóth, Gábor K.</au><au>Szalai, Tibor V.</au><au>Takács, Tamás</au><au>Araujo, Elvin</au><au>Buday, László</au><au>Perczel, András</au><au>Martinek, Tamás A.</au><au>Keserű, György M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Target‐Templated Construction of Functional Proteomimetics Using Photo‐Foldamer Libraries</atitle><jtitle>Angewandte Chemie</jtitle><date>2025-01-10</date><risdate>2025</risdate><volume>137</volume><issue>2</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Current methods for proteomimetic engineering rely on structure‐based design. Here we describe a design strategy that allows the construction of proteomimetics against challenging targets without a priori characterization of the target surface. Our approach employs (i) a 100‐membered photoreactive foldamer library, the members of which act as local surface mimetics, and (ii) the subsequent affinity maturation of the primary hits using systems chemistry. Two surface‐oriented proteinogenic side chains drove the interactions between the short helical foldamer fragments and the proteins. Diazirine‐based photo‐crosslinking was applied to sensitively detect and localize binding even to shallow and dynamic patches on representatively difficult targets. Photo‐foldamers identified functionally relevant protein interfaces, allosteric and previously unexplored targetable regions on the surface of STAT3 and an oncogenic K‐Ras variant. Target‐templated dynamic linking of foldamer hits resulted in two orders of magnitude affinity improvement in a single step. The dimeric K‐Ras ligand mimicked protein‐like catalytic functions. The photo‐foldamer approach thus enables the highly efficient mapping of protein‐protein interaction sites and provides a viable starting point for proteomimetic ligand development without a priori structural hypotheses. Expedient generation of functional proteomimetics was achieved without relying on any a priori structural hypotheses concerning target binding. A 100‐membered photoreactive local surface mimetic foldamer library mapped the challenging protein targets, yielding the primary hits. From these building blocks, a dynamic covalent selection based affinity amplification was achieved by hit‐ligation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202410435</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1039-7809</orcidid><orcidid>https://orcid.org/0000-0003-3518-5757</orcidid><orcidid>https://orcid.org/0000-0003-1252-6416</orcidid><orcidid>https://orcid.org/0000-0003-4277-9481</orcidid><orcidid>https://orcid.org/0000-0001-9976-6978</orcidid><orcidid>https://orcid.org/0009-0000-4088-3117</orcidid><orcidid>https://orcid.org/0000-0003-0716-2830</orcidid><orcidid>https://orcid.org/0000-0003-3168-8066</orcidid><orcidid>https://orcid.org/0000-0002-7637-7133</orcidid><orcidid>https://orcid.org/0000-0002-5904-0619</orcidid><orcidid>https://orcid.org/0000-0002-0095-5531</orcidid><orcidid>https://orcid.org/0000-0002-5584-6869</orcidid><orcidid>https://orcid.org/0000-0001-8278-8038</orcidid><orcidid>https://orcid.org/0000-0002-9284-5160</orcidid><orcidid>https://orcid.org/0000-0002-0611-1452</orcidid><orcidid>https://orcid.org/0009-0009-8076-7597</orcidid><orcidid>https://orcid.org/0000-0002-3604-4385</orcidid><orcidid>https://orcid.org/0000-0001-8413-3182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2025-01, Vol.137 (2), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3154028791
source Wiley-Blackwell Read & Publish Collection
subjects Affinity
Allosteric properties
Crosslinking
foldamer
fragment screening
Ligands
Peptide mapping
photoaffinity labeling
protein design
protein-protein interaction
Proteins
Stat3 protein
Structural analysis
Target detection
title Target‐Templated Construction of Functional Proteomimetics Using Photo‐Foldamer Libraries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Target%E2%80%90Templated%20Construction%20of%20Functional%20Proteomimetics%20Using%20Photo%E2%80%90Foldamer%20Libraries&rft.jtitle=Angewandte%20Chemie&rft.au=W%C3%A9ber,%20Edit&rft.date=2025-01-10&rft.volume=137&rft.issue=2&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202410435&rft_dat=%3Cproquest_cross%3E3154028791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1175-6df5341f0d2a7b8e210d5ff1ad335f611c07397bf7c07fcc3a0ce6d4f4f6915e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3154028791&rft_id=info:pmid/&rfr_iscdi=true