Loading…
SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety
With the rise in traffic accidents worldwide, it has become very important to have a more effective way to ensure road safety. To address this issue, we have made a system called SafeTrax. SafeTrax uses deep learning to predict traffic accidents and car crashes. Additionally, it has been implemented...
Saved in:
Published in: | IEEE access 2025, Vol.13, p.6667-6684 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-8d0edc3fef0d08a832cc82f5b3d88af277c41676a6bc88a25d1193b9854975b43 |
container_end_page | 6684 |
container_issue | |
container_start_page | 6667 |
container_title | IEEE access |
container_volume | 13 |
creator | Amin, Md. Fahim Bin Khan, Israt Jahan Akter, Faria Ahmed, Adib Islam, Md. Motaharul |
description | With the rise in traffic accidents worldwide, it has become very important to have a more effective way to ensure road safety. To address this issue, we have made a system called SafeTrax. SafeTrax uses deep learning to predict traffic accidents and car crashes. Additionally, it has been implemented with the Internet of Things (IoT) to gather real-time data from sensors, and AWS Greengrass to process that data quickly and give drivers timely warnings. Unlike old safety systems, SafeTrax can predict if an accident might happen. It warns drivers beforehand to make roads safer for cars, people, and other animals. SafeTrax uses video frames from camera sensors in cars to look for dangers. It then uses a special deep-learning program to figure out if a crash might happen. One important part of SafeTrax is the integration of AWS IoT Greengrass. It helps the system work faster by using cloud services on devices like the Raspberry Pi. This means the system can quickly check the data and send warnings in time. SafeTrax can ensure safer roads, and it can help save lives. |
doi_str_mv | 10.1109/ACCESS.2024.3524676 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3155821001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10819396</ieee_id><doaj_id>oai_doaj_org_article_d5e5fab948434772a97447af623e00b1</doaj_id><sourcerecordid>3155821001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-8d0edc3fef0d08a832cc82f5b3d88af277c41676a6bc88a25d1193b9854975b43</originalsourceid><addsrcrecordid>eNpNUctKBDEQHERBUb9ADwHPu-Y5Sbwtg48FQWHWqyGTh2QZJ5rMgvv3ZhwR-9JNpas6RVXVBYJLhKC8XjXNbdsuMcR0SRimNa8PqhOMarkgjNSH_-bj6jznLSwlCsT4SfXaau82SX_dgPZdpxE0se9DDnEAz8nZYMZp1IMFq96V53afR_cOXnIY3sA6boCPCbS7POow6K53oGh5HwyYdMf9WXXkdZ_d-W8_rV7ubjfNw-Lx6X7drB4XBgs5LoSFzhrinYcWCi0INkZgzzpihdAec24oKr503ZkCYGYRkqSTglHJWUfJabWedW3UW_WRQvGyV1EH9QPE9KaKuWB6pyxzzOtOUkEJ5RxrySnl2teYOAg7VLSuZq2PFD93Lo9qG3dpKN9XBDEmMIJw2iLzlkkx5-T831UE1ZSLmnNRUy7qN5fCupxZwTn3jyGKHVmTb564iEI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155821001</pqid></control><display><type>article</type><title>SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety</title><source>IEEE Xplore Open Access Journals</source><creator>Amin, Md. Fahim Bin ; Khan, Israt Jahan ; Akter, Faria ; Ahmed, Adib ; Islam, Md. Motaharul</creator><creatorcontrib>Amin, Md. Fahim Bin ; Khan, Israt Jahan ; Akter, Faria ; Ahmed, Adib ; Islam, Md. Motaharul</creatorcontrib><description>With the rise in traffic accidents worldwide, it has become very important to have a more effective way to ensure road safety. To address this issue, we have made a system called SafeTrax. SafeTrax uses deep learning to predict traffic accidents and car crashes. Additionally, it has been implemented with the Internet of Things (IoT) to gather real-time data from sensors, and AWS Greengrass to process that data quickly and give drivers timely warnings. Unlike old safety systems, SafeTrax can predict if an accident might happen. It warns drivers beforehand to make roads safer for cars, people, and other animals. SafeTrax uses video frames from camera sensors in cars to look for dangers. It then uses a special deep-learning program to figure out if a crash might happen. One important part of SafeTrax is the integration of AWS IoT Greengrass. It helps the system work faster by using cloud services on devices like the Raspberry Pi. This means the system can quickly check the data and send warnings in time. SafeTrax can ensure safer roads, and it can help save lives.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3524676</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accidents ; Accuracy ; AWS IoT Greengrass ; Cloud computing ; collision ; Crashes ; Data models ; Deep learning ; Hidden Markov models ; Internet of Things ; IoT ; Learning programs ; pedestrian ; Predictive models ; Real time ; Real-time systems ; Road safety ; Roads ; SafeTrax ; Safety ; Sensors ; Traffic ; Traffic accidents ; Traffic accidents & safety ; Traffic safety ; Vehicles</subject><ispartof>IEEE access, 2025, Vol.13, p.6667-6684</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-8d0edc3fef0d08a832cc82f5b3d88af277c41676a6bc88a25d1193b9854975b43</cites><orcidid>0000-0001-7392-793X ; 0000-0002-8030-3225 ; 0000-0003-2757-3776 ; 0009-0002-7686-7404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10819396$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27607,27897,27898,27899,54905</link.rule.ids></links><search><creatorcontrib>Amin, Md. Fahim Bin</creatorcontrib><creatorcontrib>Khan, Israt Jahan</creatorcontrib><creatorcontrib>Akter, Faria</creatorcontrib><creatorcontrib>Ahmed, Adib</creatorcontrib><creatorcontrib>Islam, Md. Motaharul</creatorcontrib><title>SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the rise in traffic accidents worldwide, it has become very important to have a more effective way to ensure road safety. To address this issue, we have made a system called SafeTrax. SafeTrax uses deep learning to predict traffic accidents and car crashes. Additionally, it has been implemented with the Internet of Things (IoT) to gather real-time data from sensors, and AWS Greengrass to process that data quickly and give drivers timely warnings. Unlike old safety systems, SafeTrax can predict if an accident might happen. It warns drivers beforehand to make roads safer for cars, people, and other animals. SafeTrax uses video frames from camera sensors in cars to look for dangers. It then uses a special deep-learning program to figure out if a crash might happen. One important part of SafeTrax is the integration of AWS IoT Greengrass. It helps the system work faster by using cloud services on devices like the Raspberry Pi. This means the system can quickly check the data and send warnings in time. SafeTrax can ensure safer roads, and it can help save lives.</description><subject>Accidents</subject><subject>Accuracy</subject><subject>AWS IoT Greengrass</subject><subject>Cloud computing</subject><subject>collision</subject><subject>Crashes</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Hidden Markov models</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Learning programs</subject><subject>pedestrian</subject><subject>Predictive models</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Road safety</subject><subject>Roads</subject><subject>SafeTrax</subject><subject>Safety</subject><subject>Sensors</subject><subject>Traffic</subject><subject>Traffic accidents</subject><subject>Traffic accidents & safety</subject><subject>Traffic safety</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKBDEQHERBUb9ADwHPu-Y5Sbwtg48FQWHWqyGTh2QZJ5rMgvv3ZhwR-9JNpas6RVXVBYJLhKC8XjXNbdsuMcR0SRimNa8PqhOMarkgjNSH_-bj6jznLSwlCsT4SfXaau82SX_dgPZdpxE0se9DDnEAz8nZYMZp1IMFq96V53afR_cOXnIY3sA6boCPCbS7POow6K53oGh5HwyYdMf9WXXkdZ_d-W8_rV7ubjfNw-Lx6X7drB4XBgs5LoSFzhrinYcWCi0INkZgzzpihdAec24oKr503ZkCYGYRkqSTglHJWUfJabWedW3UW_WRQvGyV1EH9QPE9KaKuWB6pyxzzOtOUkEJ5RxrySnl2teYOAg7VLSuZq2PFD93Lo9qG3dpKN9XBDEmMIJw2iLzlkkx5-T831UE1ZSLmnNRUy7qN5fCupxZwTn3jyGKHVmTb564iEI</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Amin, Md. Fahim Bin</creator><creator>Khan, Israt Jahan</creator><creator>Akter, Faria</creator><creator>Ahmed, Adib</creator><creator>Islam, Md. Motaharul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7392-793X</orcidid><orcidid>https://orcid.org/0000-0002-8030-3225</orcidid><orcidid>https://orcid.org/0000-0003-2757-3776</orcidid><orcidid>https://orcid.org/0009-0002-7686-7404</orcidid></search><sort><creationdate>2025</creationdate><title>SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety</title><author>Amin, Md. Fahim Bin ; Khan, Israt Jahan ; Akter, Faria ; Ahmed, Adib ; Islam, Md. Motaharul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-8d0edc3fef0d08a832cc82f5b3d88af277c41676a6bc88a25d1193b9854975b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accidents</topic><topic>Accuracy</topic><topic>AWS IoT Greengrass</topic><topic>Cloud computing</topic><topic>collision</topic><topic>Crashes</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Hidden Markov models</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Learning programs</topic><topic>pedestrian</topic><topic>Predictive models</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Road safety</topic><topic>Roads</topic><topic>SafeTrax</topic><topic>Safety</topic><topic>Sensors</topic><topic>Traffic</topic><topic>Traffic accidents</topic><topic>Traffic accidents & safety</topic><topic>Traffic safety</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Md. Fahim Bin</creatorcontrib><creatorcontrib>Khan, Israt Jahan</creatorcontrib><creatorcontrib>Akter, Faria</creatorcontrib><creatorcontrib>Ahmed, Adib</creatorcontrib><creatorcontrib>Islam, Md. Motaharul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Md. Fahim Bin</au><au>Khan, Israt Jahan</au><au>Akter, Faria</au><au>Ahmed, Adib</au><au>Islam, Md. Motaharul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>6667</spage><epage>6684</epage><pages>6667-6684</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the rise in traffic accidents worldwide, it has become very important to have a more effective way to ensure road safety. To address this issue, we have made a system called SafeTrax. SafeTrax uses deep learning to predict traffic accidents and car crashes. Additionally, it has been implemented with the Internet of Things (IoT) to gather real-time data from sensors, and AWS Greengrass to process that data quickly and give drivers timely warnings. Unlike old safety systems, SafeTrax can predict if an accident might happen. It warns drivers beforehand to make roads safer for cars, people, and other animals. SafeTrax uses video frames from camera sensors in cars to look for dangers. It then uses a special deep-learning program to figure out if a crash might happen. One important part of SafeTrax is the integration of AWS IoT Greengrass. It helps the system work faster by using cloud services on devices like the Raspberry Pi. This means the system can quickly check the data and send warnings in time. SafeTrax can ensure safer roads, and it can help save lives.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3524676</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7392-793X</orcidid><orcidid>https://orcid.org/0000-0002-8030-3225</orcidid><orcidid>https://orcid.org/0000-0003-2757-3776</orcidid><orcidid>https://orcid.org/0009-0002-7686-7404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2025, Vol.13, p.6667-6684 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3155821001 |
source | IEEE Xplore Open Access Journals |
subjects | Accidents Accuracy AWS IoT Greengrass Cloud computing collision Crashes Data models Deep learning Hidden Markov models Internet of Things IoT Learning programs pedestrian Predictive models Real time Real-time systems Road safety Roads SafeTrax Safety Sensors Traffic Traffic accidents Traffic accidents & safety Traffic safety Vehicles |
title | SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T12%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SafeTrax:%20Smart%20Collision%20Prediction%20and%20Alert%20System%20Using%20IoT%20for%20Sustainable%20Traffic%20Safety&rft.jtitle=IEEE%20access&rft.au=Amin,%20Md.%20Fahim%20Bin&rft.date=2025&rft.volume=13&rft.spage=6667&rft.epage=6684&rft.pages=6667-6684&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3524676&rft_dat=%3Cproquest_doaj_%3E3155821001%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-8d0edc3fef0d08a832cc82f5b3d88af277c41676a6bc88a25d1193b9854975b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3155821001&rft_id=info:pmid/&rft_ieee_id=10819396&rfr_iscdi=true |