Loading…

SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety

With the rise in traffic accidents worldwide, it has become very important to have a more effective way to ensure road safety. To address this issue, we have made a system called SafeTrax. SafeTrax uses deep learning to predict traffic accidents and car crashes. Additionally, it has been implemented...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2025, Vol.13, p.6667-6684
Main Authors: Amin, Md. Fahim Bin, Khan, Israt Jahan, Akter, Faria, Ahmed, Adib, Islam, Md. Motaharul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-8d0edc3fef0d08a832cc82f5b3d88af277c41676a6bc88a25d1193b9854975b43
container_end_page 6684
container_issue
container_start_page 6667
container_title IEEE access
container_volume 13
creator Amin, Md. Fahim Bin
Khan, Israt Jahan
Akter, Faria
Ahmed, Adib
Islam, Md. Motaharul
description With the rise in traffic accidents worldwide, it has become very important to have a more effective way to ensure road safety. To address this issue, we have made a system called SafeTrax. SafeTrax uses deep learning to predict traffic accidents and car crashes. Additionally, it has been implemented with the Internet of Things (IoT) to gather real-time data from sensors, and AWS Greengrass to process that data quickly and give drivers timely warnings. Unlike old safety systems, SafeTrax can predict if an accident might happen. It warns drivers beforehand to make roads safer for cars, people, and other animals. SafeTrax uses video frames from camera sensors in cars to look for dangers. It then uses a special deep-learning program to figure out if a crash might happen. One important part of SafeTrax is the integration of AWS IoT Greengrass. It helps the system work faster by using cloud services on devices like the Raspberry Pi. This means the system can quickly check the data and send warnings in time. SafeTrax can ensure safer roads, and it can help save lives.
doi_str_mv 10.1109/ACCESS.2024.3524676
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3155821001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10819396</ieee_id><doaj_id>oai_doaj_org_article_d5e5fab948434772a97447af623e00b1</doaj_id><sourcerecordid>3155821001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-8d0edc3fef0d08a832cc82f5b3d88af277c41676a6bc88a25d1193b9854975b43</originalsourceid><addsrcrecordid>eNpNUctKBDEQHERBUb9ADwHPu-Y5Sbwtg48FQWHWqyGTh2QZJ5rMgvv3ZhwR-9JNpas6RVXVBYJLhKC8XjXNbdsuMcR0SRimNa8PqhOMarkgjNSH_-bj6jznLSwlCsT4SfXaau82SX_dgPZdpxE0se9DDnEAz8nZYMZp1IMFq96V53afR_cOXnIY3sA6boCPCbS7POow6K53oGh5HwyYdMf9WXXkdZ_d-W8_rV7ubjfNw-Lx6X7drB4XBgs5LoSFzhrinYcWCi0INkZgzzpihdAec24oKr503ZkCYGYRkqSTglHJWUfJabWedW3UW_WRQvGyV1EH9QPE9KaKuWB6pyxzzOtOUkEJ5RxrySnl2teYOAg7VLSuZq2PFD93Lo9qG3dpKN9XBDEmMIJw2iLzlkkx5-T831UE1ZSLmnNRUy7qN5fCupxZwTn3jyGKHVmTb564iEI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155821001</pqid></control><display><type>article</type><title>SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety</title><source>IEEE Xplore Open Access Journals</source><creator>Amin, Md. Fahim Bin ; Khan, Israt Jahan ; Akter, Faria ; Ahmed, Adib ; Islam, Md. Motaharul</creator><creatorcontrib>Amin, Md. Fahim Bin ; Khan, Israt Jahan ; Akter, Faria ; Ahmed, Adib ; Islam, Md. Motaharul</creatorcontrib><description>With the rise in traffic accidents worldwide, it has become very important to have a more effective way to ensure road safety. To address this issue, we have made a system called SafeTrax. SafeTrax uses deep learning to predict traffic accidents and car crashes. Additionally, it has been implemented with the Internet of Things (IoT) to gather real-time data from sensors, and AWS Greengrass to process that data quickly and give drivers timely warnings. Unlike old safety systems, SafeTrax can predict if an accident might happen. It warns drivers beforehand to make roads safer for cars, people, and other animals. SafeTrax uses video frames from camera sensors in cars to look for dangers. It then uses a special deep-learning program to figure out if a crash might happen. One important part of SafeTrax is the integration of AWS IoT Greengrass. It helps the system work faster by using cloud services on devices like the Raspberry Pi. This means the system can quickly check the data and send warnings in time. SafeTrax can ensure safer roads, and it can help save lives.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3524676</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accidents ; Accuracy ; AWS IoT Greengrass ; Cloud computing ; collision ; Crashes ; Data models ; Deep learning ; Hidden Markov models ; Internet of Things ; IoT ; Learning programs ; pedestrian ; Predictive models ; Real time ; Real-time systems ; Road safety ; Roads ; SafeTrax ; Safety ; Sensors ; Traffic ; Traffic accidents ; Traffic accidents &amp; safety ; Traffic safety ; Vehicles</subject><ispartof>IEEE access, 2025, Vol.13, p.6667-6684</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-8d0edc3fef0d08a832cc82f5b3d88af277c41676a6bc88a25d1193b9854975b43</cites><orcidid>0000-0001-7392-793X ; 0000-0002-8030-3225 ; 0000-0003-2757-3776 ; 0009-0002-7686-7404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10819396$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27607,27897,27898,27899,54905</link.rule.ids></links><search><creatorcontrib>Amin, Md. Fahim Bin</creatorcontrib><creatorcontrib>Khan, Israt Jahan</creatorcontrib><creatorcontrib>Akter, Faria</creatorcontrib><creatorcontrib>Ahmed, Adib</creatorcontrib><creatorcontrib>Islam, Md. Motaharul</creatorcontrib><title>SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the rise in traffic accidents worldwide, it has become very important to have a more effective way to ensure road safety. To address this issue, we have made a system called SafeTrax. SafeTrax uses deep learning to predict traffic accidents and car crashes. Additionally, it has been implemented with the Internet of Things (IoT) to gather real-time data from sensors, and AWS Greengrass to process that data quickly and give drivers timely warnings. Unlike old safety systems, SafeTrax can predict if an accident might happen. It warns drivers beforehand to make roads safer for cars, people, and other animals. SafeTrax uses video frames from camera sensors in cars to look for dangers. It then uses a special deep-learning program to figure out if a crash might happen. One important part of SafeTrax is the integration of AWS IoT Greengrass. It helps the system work faster by using cloud services on devices like the Raspberry Pi. This means the system can quickly check the data and send warnings in time. SafeTrax can ensure safer roads, and it can help save lives.</description><subject>Accidents</subject><subject>Accuracy</subject><subject>AWS IoT Greengrass</subject><subject>Cloud computing</subject><subject>collision</subject><subject>Crashes</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Hidden Markov models</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Learning programs</subject><subject>pedestrian</subject><subject>Predictive models</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Road safety</subject><subject>Roads</subject><subject>SafeTrax</subject><subject>Safety</subject><subject>Sensors</subject><subject>Traffic</subject><subject>Traffic accidents</subject><subject>Traffic accidents &amp; safety</subject><subject>Traffic safety</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKBDEQHERBUb9ADwHPu-Y5Sbwtg48FQWHWqyGTh2QZJ5rMgvv3ZhwR-9JNpas6RVXVBYJLhKC8XjXNbdsuMcR0SRimNa8PqhOMarkgjNSH_-bj6jznLSwlCsT4SfXaau82SX_dgPZdpxE0se9DDnEAz8nZYMZp1IMFq96V53afR_cOXnIY3sA6boCPCbS7POow6K53oGh5HwyYdMf9WXXkdZ_d-W8_rV7ubjfNw-Lx6X7drB4XBgs5LoSFzhrinYcWCi0INkZgzzpihdAec24oKr503ZkCYGYRkqSTglHJWUfJabWedW3UW_WRQvGyV1EH9QPE9KaKuWB6pyxzzOtOUkEJ5RxrySnl2teYOAg7VLSuZq2PFD93Lo9qG3dpKN9XBDEmMIJw2iLzlkkx5-T831UE1ZSLmnNRUy7qN5fCupxZwTn3jyGKHVmTb564iEI</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Amin, Md. Fahim Bin</creator><creator>Khan, Israt Jahan</creator><creator>Akter, Faria</creator><creator>Ahmed, Adib</creator><creator>Islam, Md. Motaharul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7392-793X</orcidid><orcidid>https://orcid.org/0000-0002-8030-3225</orcidid><orcidid>https://orcid.org/0000-0003-2757-3776</orcidid><orcidid>https://orcid.org/0009-0002-7686-7404</orcidid></search><sort><creationdate>2025</creationdate><title>SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety</title><author>Amin, Md. Fahim Bin ; Khan, Israt Jahan ; Akter, Faria ; Ahmed, Adib ; Islam, Md. Motaharul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-8d0edc3fef0d08a832cc82f5b3d88af277c41676a6bc88a25d1193b9854975b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accidents</topic><topic>Accuracy</topic><topic>AWS IoT Greengrass</topic><topic>Cloud computing</topic><topic>collision</topic><topic>Crashes</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Hidden Markov models</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Learning programs</topic><topic>pedestrian</topic><topic>Predictive models</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Road safety</topic><topic>Roads</topic><topic>SafeTrax</topic><topic>Safety</topic><topic>Sensors</topic><topic>Traffic</topic><topic>Traffic accidents</topic><topic>Traffic accidents &amp; safety</topic><topic>Traffic safety</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Md. Fahim Bin</creatorcontrib><creatorcontrib>Khan, Israt Jahan</creatorcontrib><creatorcontrib>Akter, Faria</creatorcontrib><creatorcontrib>Ahmed, Adib</creatorcontrib><creatorcontrib>Islam, Md. Motaharul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Md. Fahim Bin</au><au>Khan, Israt Jahan</au><au>Akter, Faria</au><au>Ahmed, Adib</au><au>Islam, Md. Motaharul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>6667</spage><epage>6684</epage><pages>6667-6684</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the rise in traffic accidents worldwide, it has become very important to have a more effective way to ensure road safety. To address this issue, we have made a system called SafeTrax. SafeTrax uses deep learning to predict traffic accidents and car crashes. Additionally, it has been implemented with the Internet of Things (IoT) to gather real-time data from sensors, and AWS Greengrass to process that data quickly and give drivers timely warnings. Unlike old safety systems, SafeTrax can predict if an accident might happen. It warns drivers beforehand to make roads safer for cars, people, and other animals. SafeTrax uses video frames from camera sensors in cars to look for dangers. It then uses a special deep-learning program to figure out if a crash might happen. One important part of SafeTrax is the integration of AWS IoT Greengrass. It helps the system work faster by using cloud services on devices like the Raspberry Pi. This means the system can quickly check the data and send warnings in time. SafeTrax can ensure safer roads, and it can help save lives.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3524676</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7392-793X</orcidid><orcidid>https://orcid.org/0000-0002-8030-3225</orcidid><orcidid>https://orcid.org/0000-0003-2757-3776</orcidid><orcidid>https://orcid.org/0009-0002-7686-7404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2025, Vol.13, p.6667-6684
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3155821001
source IEEE Xplore Open Access Journals
subjects Accidents
Accuracy
AWS IoT Greengrass
Cloud computing
collision
Crashes
Data models
Deep learning
Hidden Markov models
Internet of Things
IoT
Learning programs
pedestrian
Predictive models
Real time
Real-time systems
Road safety
Roads
SafeTrax
Safety
Sensors
Traffic
Traffic accidents
Traffic accidents & safety
Traffic safety
Vehicles
title SafeTrax: Smart Collision Prediction and Alert System Using IoT for Sustainable Traffic Safety
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T12%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SafeTrax:%20Smart%20Collision%20Prediction%20and%20Alert%20System%20Using%20IoT%20for%20Sustainable%20Traffic%20Safety&rft.jtitle=IEEE%20access&rft.au=Amin,%20Md.%20Fahim%20Bin&rft.date=2025&rft.volume=13&rft.spage=6667&rft.epage=6684&rft.pages=6667-6684&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3524676&rft_dat=%3Cproquest_doaj_%3E3155821001%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-8d0edc3fef0d08a832cc82f5b3d88af277c41676a6bc88a25d1193b9854975b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3155821001&rft_id=info:pmid/&rft_ieee_id=10819396&rfr_iscdi=true