Loading…
Identification of superior hybrid clones for fibre biometry in Eucalyptus camaldulensis × E. tereticornis using multi trait stability index
Genotype × environment (G×E) interaction is a major challenge in selecting superior genotypes based on growth traits in since phenotypic variability is significantly affected by environmental heterogeneity. The aim of the present investigation was to understand the relationship between wood property...
Saved in:
Published in: | Silvae genetica 2024-01, Vol.73 (1), p.126-141 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Genotype × environment (G×E) interaction is a major challenge in selecting superior genotypes based on growth traits in
since phenotypic variability is significantly affected by environmental heterogeneity. The aim of the present investigation was to understand the relationship between wood property traits and fibre biometry in the bi-parental mapping population of
across three locations and identify stable genotypes based on multiple traits to improve prediction accuracy in breeding programs. High broad-sense heritability was documented for fibre parameters indicating a good prospect of these traits for genotype selection in hybrid breeding programmes in
. Significant positive correlation of fibre parameters with cellulose, acoustic velocity, DMoE and negative correlation with lignin reiterate that the fibre traits can be improved by the selection of genotype for improved wood property traits. Multi-Trait Stability Index (MTSI) and weighted average of absolute scores of the genotype index (WAASB) short-listed four genotypes (C343, C327, C246 and C161) with improved wood property traits and the mean of selected genotypes for all traits was significantly higher than the grand mean of the overall genotypes. The identified superior and stable genotypes with improved wood properties and fibre biometry can be used in plantation programs or as genitors in breeding programs. |
---|---|
ISSN: | 2509-8934 0037-5349 2509-8934 |
DOI: | 10.2478/sg-2024-0013 |