Loading…

Conformal load prediction with transductive graph autoencoders

Predicting edge weights on graphs has various applications, from transportation systems to social networks. This paper describes a Graph Neural Network (GNN) approach for edge weight prediction with guaranteed coverage. We leverage conformal prediction to calibrate the GNN outputs and produce valid...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning 2025-03, Vol.114 (3), p.54, Article 54
Main Authors: Luo, Rui, Colombo, Nicolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c159w-b958d3d6207cd58bc2caabda00b8c2262b5806f67d9bcca70d39ce320ad53fb53
container_end_page
container_issue 3
container_start_page 54
container_title Machine learning
container_volume 114
creator Luo, Rui
Colombo, Nicolo
description Predicting edge weights on graphs has various applications, from transportation systems to social networks. This paper describes a Graph Neural Network (GNN) approach for edge weight prediction with guaranteed coverage. We leverage conformal prediction to calibrate the GNN outputs and produce valid prediction intervals. We handle data heteroscedasticity through error reweighting and Conformalized Quantile Regression (CQR). We compare the performance of our method against baseline techniques on real-world transportation datasets. Our approach has better coverage and efficiency than all baselines and showcases robustness and adaptability.
doi_str_mv 10.1007/s10994-024-06713-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3164194182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3164194182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c159w-b958d3d6207cd58bc2caabda00b8c2262b5806f67d9bcca70d39ce320ad53fb53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0qTpRZDFL1jwoueQr-522W1q0lr890YrePMwDAzP-w48CF0SuCYA1U0iUNclBppHVITh6QgtCK8YBi74MVqAlBwLQvkpOktpBwBUSLFAt6vQNSEe9L7YB-2KPnrX2qENXTG1w7YYou6SG_PlwxebqPttocch-M4G52M6RyeN3id_8buX6O3h_nX1hNcvj8-ruzW2hNcTNjWXjjlBobKOS2Op1do4DWCkpVRQwyWIRlSuNtbqChyrrWcUtOOsMZwt0dXc28fwPvo0qF0YY5dfKkZESeqSSJopOlM2hpSib1Qf24OOn4qA-vakZk8qe1I_ntSUQ2wOpQx3Gx__qv9JfQG6qGy_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3164194182</pqid></control><display><type>article</type><title>Conformal load prediction with transductive graph autoencoders</title><source>Springer Nature</source><creator>Luo, Rui ; Colombo, Nicolo</creator><creatorcontrib>Luo, Rui ; Colombo, Nicolo</creatorcontrib><description>Predicting edge weights on graphs has various applications, from transportation systems to social networks. This paper describes a Graph Neural Network (GNN) approach for edge weight prediction with guaranteed coverage. We leverage conformal prediction to calibrate the GNN outputs and produce valid prediction intervals. We handle data heteroscedasticity through error reweighting and Conformalized Quantile Regression (CQR). We compare the performance of our method against baseline techniques on real-world transportation datasets. Our approach has better coverage and efficiency than all baselines and showcases robustness and adaptability.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-024-06713-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Control ; Graph neural networks ; Machine Learning ; Mechatronics ; Natural Language Processing (NLP) ; Predictions ; Robotics ; Simulation and Modeling ; Social networks ; Transportation systems</subject><ispartof>Machine learning, 2025-03, Vol.114 (3), p.54, Article 54</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Mar 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c159w-b958d3d6207cd58bc2caabda00b8c2262b5806f67d9bcca70d39ce320ad53fb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Colombo, Nicolo</creatorcontrib><title>Conformal load prediction with transductive graph autoencoders</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Predicting edge weights on graphs has various applications, from transportation systems to social networks. This paper describes a Graph Neural Network (GNN) approach for edge weight prediction with guaranteed coverage. We leverage conformal prediction to calibrate the GNN outputs and produce valid prediction intervals. We handle data heteroscedasticity through error reweighting and Conformalized Quantile Regression (CQR). We compare the performance of our method against baseline techniques on real-world transportation datasets. Our approach has better coverage and efficiency than all baselines and showcases robustness and adaptability.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Graph neural networks</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Predictions</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Social networks</subject><subject>Transportation systems</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0qTpRZDFL1jwoueQr-522W1q0lr890YrePMwDAzP-w48CF0SuCYA1U0iUNclBppHVITh6QgtCK8YBi74MVqAlBwLQvkpOktpBwBUSLFAt6vQNSEe9L7YB-2KPnrX2qENXTG1w7YYou6SG_PlwxebqPttocch-M4G52M6RyeN3id_8buX6O3h_nX1hNcvj8-ruzW2hNcTNjWXjjlBobKOS2Op1do4DWCkpVRQwyWIRlSuNtbqChyrrWcUtOOsMZwt0dXc28fwPvo0qF0YY5dfKkZESeqSSJopOlM2hpSib1Qf24OOn4qA-vakZk8qe1I_ntSUQ2wOpQx3Gx__qv9JfQG6qGy_</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>Luo, Rui</creator><creator>Colombo, Nicolo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20250301</creationdate><title>Conformal load prediction with transductive graph autoencoders</title><author>Luo, Rui ; Colombo, Nicolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c159w-b958d3d6207cd58bc2caabda00b8c2262b5806f67d9bcca70d39ce320ad53fb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Graph neural networks</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Predictions</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Social networks</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Colombo, Nicolo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Rui</au><au>Colombo, Nicolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal load prediction with transductive graph autoencoders</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2025-03-01</date><risdate>2025</risdate><volume>114</volume><issue>3</issue><spage>54</spage><pages>54-</pages><artnum>54</artnum><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Predicting edge weights on graphs has various applications, from transportation systems to social networks. This paper describes a Graph Neural Network (GNN) approach for edge weight prediction with guaranteed coverage. We leverage conformal prediction to calibrate the GNN outputs and produce valid prediction intervals. We handle data heteroscedasticity through error reweighting and Conformalized Quantile Regression (CQR). We compare the performance of our method against baseline techniques on real-world transportation datasets. Our approach has better coverage and efficiency than all baselines and showcases robustness and adaptability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-024-06713-w</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2025-03, Vol.114 (3), p.54, Article 54
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_journals_3164194182
source Springer Nature
subjects Artificial Intelligence
Computer Science
Control
Graph neural networks
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Predictions
Robotics
Simulation and Modeling
Social networks
Transportation systems
title Conformal load prediction with transductive graph autoencoders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T03%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20load%20prediction%20with%20transductive%20graph%20autoencoders&rft.jtitle=Machine%20learning&rft.au=Luo,%20Rui&rft.date=2025-03-01&rft.volume=114&rft.issue=3&rft.spage=54&rft.pages=54-&rft.artnum=54&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-024-06713-w&rft_dat=%3Cproquest_cross%3E3164194182%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c159w-b958d3d6207cd58bc2caabda00b8c2262b5806f67d9bcca70d39ce320ad53fb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3164194182&rft_id=info:pmid/&rfr_iscdi=true