Loading…

A Method to Handle Unbalanced Systems in Branch Current-Based State Estimators

The undergoing energy transition to a sustainable future requires, among other things, the application of demand side management (DSM) techniques to maintain grid stability and allow a smooth performance. To successfully implement DSM strategies, near real-time monitoring of the grid is required. Th...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2025-01, Vol.17 (3), p.942
Main Authors: Llombart, Andrés, Parada, Luis, Torres, Miguel, Galán, Noemi, Martinez, Diego
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The undergoing energy transition to a sustainable future requires, among other things, the application of demand side management (DSM) techniques to maintain grid stability and allow a smooth performance. To successfully implement DSM strategies, near real-time monitoring of the grid is required. This can be achieved through a distribution system state estimator (DSSE). Conventional approaches to state estimation (SE) typically rely on the assumption of a balanced reference bus, which is reasonable for transmission systems but may not be applicable to low-voltage distribution networks, even more with significant distributed generation (DG) penetration. To address this problem, a branch current-based low-voltage DSSE for unbalanced three-phase systems is developed. The algorithm incorporates a virtual bus to account for highly unbalanced systems, enabling it to obtain a more accurate estimation of the grid state. The proposed method is compared to the conventional balanced reference bus method through multiple simulations under different load conditions in the IEEE European low-voltage test feeder.
ISSN:2071-1050
2071-1050
DOI:10.3390/su17030942