Loading…
Sequential order statistics with an order statistics prior
In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is i...
Saved in:
Published in: | Journal of multivariate analysis 2010-09, Vol.101 (8), p.1826-1836 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723 |
container_end_page | 1836 |
container_issue | 8 |
container_start_page | 1826 |
container_title | Journal of multivariate analysis |
container_volume | 101 |
creator | Burkschat, M. Kamps, U. Kateri, M. |
description | In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is introduced along with some properties. The choice of independent priors in both set-ups leads to respective independent, conjugate posterior distributions for the model parameters of sequential order statistics. Since, in practical applications, the model parameters will often be increasingly ordered, a multivariate prior is applied being the joint distribution of common ETED-order statistics. Whatever baseline distribution of the sequential order statistics is chosen, the joint posterior distribution turns out to be a Weinman multivariate exponential distribution. Posterior moments are given explicitly, and HPD credible sets for the model parameters are stated. |
doi_str_mv | 10.1016/j.jmva.2010.03.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_346145175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X1000076X</els_id><sourcerecordid>2043315091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BT0XwuDUvyW424kXEL1A8qOAtxOwLZml3axIr_fdmbelFEDJ5kDczGYaQY6BToFCdtdN2vjRTRvMD5VMKcoeMgKqykEzwXTKiVMiCleptnxzE2FIKUEoxIufP-PmFXfJmNulDg2ESk0k-Jm_j5Nunj4np_i4WwffhkOw5M4t4tJlj8npz_XJ1Vzw83d5fXT4UVjCZCleDRSocoARjQQE1lbCNY_m8cwWVhLLhJXKnnJMlVNYowWtVKy6FkYyPycnadxH6nDUm3fZfoctfai4qECXIMpPYmmRDH2NAp3PGuQkrDVQPFelWDxXpoSJNuc4VZdHjWhRwgXarQMSB2hm91Nxkcb5XGb9SbnxGnbEYljWrNNS80h9pnv1ON0lNtGbmgumsj1tfxupKKEUz72LNw1zb0mPQ0XrsLDY-oE266f1_sX8AtACVhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>346145175</pqid></control><display><type>article</type><title>Sequential order statistics with an order statistics prior</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Burkschat, M. ; Kamps, U. ; Kateri, M.</creator><creatorcontrib>Burkschat, M. ; Kamps, U. ; Kateri, M.</creatorcontrib><description>In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is introduced along with some properties. The choice of independent priors in both set-ups leads to respective independent, conjugate posterior distributions for the model parameters of sequential order statistics. Since, in practical applications, the model parameters will often be increasingly ordered, a multivariate prior is applied being the joint distribution of common ETED-order statistics. Whatever baseline distribution of the sequential order statistics is chosen, the joint posterior distribution turns out to be a Weinman multivariate exponential distribution. Posterior moments are given explicitly, and HPD credible sets for the model parameters are stated.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2010.03.017</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Distribution theory ; Erlang distribution ; ETED ; ETED Gamma distribution Erlang distribution Independent gamma priors Weinman multivariate exponential distribution ; Exact sciences and technology ; Gamma distribution ; Independent gamma priors ; Mathematics ; Multivariate analysis ; Nonparametric inference ; Probability and statistics ; Probability distribution ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics ; Studies ; Weinman multivariate exponential distribution</subject><ispartof>Journal of multivariate analysis, 2010-09, Vol.101 (8), p.1826-1836</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor & Francis Group Sep 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723</citedby><cites>FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22864990$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a101_3ay_3a2010_3ai_3a8_3ap_3a1826-1836.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkschat, M.</creatorcontrib><creatorcontrib>Kamps, U.</creatorcontrib><creatorcontrib>Kateri, M.</creatorcontrib><title>Sequential order statistics with an order statistics prior</title><title>Journal of multivariate analysis</title><description>In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is introduced along with some properties. The choice of independent priors in both set-ups leads to respective independent, conjugate posterior distributions for the model parameters of sequential order statistics. Since, in practical applications, the model parameters will often be increasingly ordered, a multivariate prior is applied being the joint distribution of common ETED-order statistics. Whatever baseline distribution of the sequential order statistics is chosen, the joint posterior distribution turns out to be a Weinman multivariate exponential distribution. Posterior moments are given explicitly, and HPD credible sets for the model parameters are stated.</description><subject>Distribution theory</subject><subject>Erlang distribution</subject><subject>ETED</subject><subject>ETED Gamma distribution Erlang distribution Independent gamma priors Weinman multivariate exponential distribution</subject><subject>Exact sciences and technology</subject><subject>Gamma distribution</subject><subject>Independent gamma priors</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Probability distribution</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><subject>Weinman multivariate exponential distribution</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BT0XwuDUvyW424kXEL1A8qOAtxOwLZml3axIr_fdmbelFEDJ5kDczGYaQY6BToFCdtdN2vjRTRvMD5VMKcoeMgKqykEzwXTKiVMiCleptnxzE2FIKUEoxIufP-PmFXfJmNulDg2ESk0k-Jm_j5Nunj4np_i4WwffhkOw5M4t4tJlj8npz_XJ1Vzw83d5fXT4UVjCZCleDRSocoARjQQE1lbCNY_m8cwWVhLLhJXKnnJMlVNYowWtVKy6FkYyPycnadxH6nDUm3fZfoctfai4qECXIMpPYmmRDH2NAp3PGuQkrDVQPFelWDxXpoSJNuc4VZdHjWhRwgXarQMSB2hm91Nxkcb5XGb9SbnxGnbEYljWrNNS80h9pnv1ON0lNtGbmgumsj1tfxupKKEUz72LNw1zb0mPQ0XrsLDY-oE266f1_sX8AtACVhg</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Burkschat, M.</creator><creator>Kamps, U.</creator><creator>Kateri, M.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor & Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20100901</creationdate><title>Sequential order statistics with an order statistics prior</title><author>Burkschat, M. ; Kamps, U. ; Kateri, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Distribution theory</topic><topic>Erlang distribution</topic><topic>ETED</topic><topic>ETED Gamma distribution Erlang distribution Independent gamma priors Weinman multivariate exponential distribution</topic><topic>Exact sciences and technology</topic><topic>Gamma distribution</topic><topic>Independent gamma priors</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Probability distribution</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><topic>Weinman multivariate exponential distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkschat, M.</creatorcontrib><creatorcontrib>Kamps, U.</creatorcontrib><creatorcontrib>Kateri, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkschat, M.</au><au>Kamps, U.</au><au>Kateri, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential order statistics with an order statistics prior</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>101</volume><issue>8</issue><spage>1826</spage><epage>1836</epage><pages>1826-1836</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is introduced along with some properties. The choice of independent priors in both set-ups leads to respective independent, conjugate posterior distributions for the model parameters of sequential order statistics. Since, in practical applications, the model parameters will often be increasingly ordered, a multivariate prior is applied being the joint distribution of common ETED-order statistics. Whatever baseline distribution of the sequential order statistics is chosen, the joint posterior distribution turns out to be a Weinman multivariate exponential distribution. Posterior moments are given explicitly, and HPD credible sets for the model parameters are stated.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2010.03.017</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 2010-09, Vol.101 (8), p.1826-1836 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_proquest_journals_346145175 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Distribution theory Erlang distribution ETED ETED Gamma distribution Erlang distribution Independent gamma priors Weinman multivariate exponential distribution Exact sciences and technology Gamma distribution Independent gamma priors Mathematics Multivariate analysis Nonparametric inference Probability and statistics Probability distribution Probability theory and stochastic processes Sciences and techniques of general use Statistics Studies Weinman multivariate exponential distribution |
title | Sequential order statistics with an order statistics prior |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20order%20statistics%20with%20an%20order%20statistics%20prior&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Burkschat,%20M.&rft.date=2010-09-01&rft.volume=101&rft.issue=8&rft.spage=1826&rft.epage=1836&rft.pages=1826-1836&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2010.03.017&rft_dat=%3Cproquest_cross%3E2043315091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=346145175&rft_id=info:pmid/&rfr_iscdi=true |