Loading…

Sequential order statistics with an order statistics prior

In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multivariate analysis 2010-09, Vol.101 (8), p.1826-1836
Main Authors: Burkschat, M., Kamps, U., Kateri, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723
cites cdi_FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723
container_end_page 1836
container_issue 8
container_start_page 1826
container_title Journal of multivariate analysis
container_volume 101
creator Burkschat, M.
Kamps, U.
Kateri, M.
description In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is introduced along with some properties. The choice of independent priors in both set-ups leads to respective independent, conjugate posterior distributions for the model parameters of sequential order statistics. Since, in practical applications, the model parameters will often be increasingly ordered, a multivariate prior is applied being the joint distribution of common ETED-order statistics. Whatever baseline distribution of the sequential order statistics is chosen, the joint posterior distribution turns out to be a Weinman multivariate exponential distribution. Posterior moments are given explicitly, and HPD credible sets for the model parameters are stated.
doi_str_mv 10.1016/j.jmva.2010.03.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_346145175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X1000076X</els_id><sourcerecordid>2043315091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BT0XwuDUvyW424kXEL1A8qOAtxOwLZml3axIr_fdmbelFEDJ5kDczGYaQY6BToFCdtdN2vjRTRvMD5VMKcoeMgKqykEzwXTKiVMiCleptnxzE2FIKUEoxIufP-PmFXfJmNulDg2ESk0k-Jm_j5Nunj4np_i4WwffhkOw5M4t4tJlj8npz_XJ1Vzw83d5fXT4UVjCZCleDRSocoARjQQE1lbCNY_m8cwWVhLLhJXKnnJMlVNYowWtVKy6FkYyPycnadxH6nDUm3fZfoctfai4qECXIMpPYmmRDH2NAp3PGuQkrDVQPFelWDxXpoSJNuc4VZdHjWhRwgXarQMSB2hm91Nxkcb5XGb9SbnxGnbEYljWrNNS80h9pnv1ON0lNtGbmgumsj1tfxupKKEUz72LNw1zb0mPQ0XrsLDY-oE266f1_sX8AtACVhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>346145175</pqid></control><display><type>article</type><title>Sequential order statistics with an order statistics prior</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Burkschat, M. ; Kamps, U. ; Kateri, M.</creator><creatorcontrib>Burkschat, M. ; Kamps, U. ; Kateri, M.</creatorcontrib><description>In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is introduced along with some properties. The choice of independent priors in both set-ups leads to respective independent, conjugate posterior distributions for the model parameters of sequential order statistics. Since, in practical applications, the model parameters will often be increasingly ordered, a multivariate prior is applied being the joint distribution of common ETED-order statistics. Whatever baseline distribution of the sequential order statistics is chosen, the joint posterior distribution turns out to be a Weinman multivariate exponential distribution. Posterior moments are given explicitly, and HPD credible sets for the model parameters are stated.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2010.03.017</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Distribution theory ; Erlang distribution ; ETED ; ETED Gamma distribution Erlang distribution Independent gamma priors Weinman multivariate exponential distribution ; Exact sciences and technology ; Gamma distribution ; Independent gamma priors ; Mathematics ; Multivariate analysis ; Nonparametric inference ; Probability and statistics ; Probability distribution ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics ; Studies ; Weinman multivariate exponential distribution</subject><ispartof>Journal of multivariate analysis, 2010-09, Vol.101 (8), p.1826-1836</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group Sep 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723</citedby><cites>FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22864990$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a101_3ay_3a2010_3ai_3a8_3ap_3a1826-1836.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkschat, M.</creatorcontrib><creatorcontrib>Kamps, U.</creatorcontrib><creatorcontrib>Kateri, M.</creatorcontrib><title>Sequential order statistics with an order statistics prior</title><title>Journal of multivariate analysis</title><description>In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is introduced along with some properties. The choice of independent priors in both set-ups leads to respective independent, conjugate posterior distributions for the model parameters of sequential order statistics. Since, in practical applications, the model parameters will often be increasingly ordered, a multivariate prior is applied being the joint distribution of common ETED-order statistics. Whatever baseline distribution of the sequential order statistics is chosen, the joint posterior distribution turns out to be a Weinman multivariate exponential distribution. Posterior moments are given explicitly, and HPD credible sets for the model parameters are stated.</description><subject>Distribution theory</subject><subject>Erlang distribution</subject><subject>ETED</subject><subject>ETED Gamma distribution Erlang distribution Independent gamma priors Weinman multivariate exponential distribution</subject><subject>Exact sciences and technology</subject><subject>Gamma distribution</subject><subject>Independent gamma priors</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Probability distribution</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><subject>Weinman multivariate exponential distribution</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BT0XwuDUvyW424kXEL1A8qOAtxOwLZml3axIr_fdmbelFEDJ5kDczGYaQY6BToFCdtdN2vjRTRvMD5VMKcoeMgKqykEzwXTKiVMiCleptnxzE2FIKUEoxIufP-PmFXfJmNulDg2ESk0k-Jm_j5Nunj4np_i4WwffhkOw5M4t4tJlj8npz_XJ1Vzw83d5fXT4UVjCZCleDRSocoARjQQE1lbCNY_m8cwWVhLLhJXKnnJMlVNYowWtVKy6FkYyPycnadxH6nDUm3fZfoctfai4qECXIMpPYmmRDH2NAp3PGuQkrDVQPFelWDxXpoSJNuc4VZdHjWhRwgXarQMSB2hm91Nxkcb5XGb9SbnxGnbEYljWrNNS80h9pnv1ON0lNtGbmgumsj1tfxupKKEUz72LNw1zb0mPQ0XrsLDY-oE266f1_sX8AtACVhg</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Burkschat, M.</creator><creator>Kamps, U.</creator><creator>Kateri, M.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20100901</creationdate><title>Sequential order statistics with an order statistics prior</title><author>Burkschat, M. ; Kamps, U. ; Kateri, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Distribution theory</topic><topic>Erlang distribution</topic><topic>ETED</topic><topic>ETED Gamma distribution Erlang distribution Independent gamma priors Weinman multivariate exponential distribution</topic><topic>Exact sciences and technology</topic><topic>Gamma distribution</topic><topic>Independent gamma priors</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Probability distribution</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><topic>Weinman multivariate exponential distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkschat, M.</creatorcontrib><creatorcontrib>Kamps, U.</creatorcontrib><creatorcontrib>Kateri, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkschat, M.</au><au>Kamps, U.</au><au>Kateri, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential order statistics with an order statistics prior</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>101</volume><issue>8</issue><spage>1826</spage><epage>1836</epage><pages>1826-1836</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>In the model of sequential order statistics, prior distributions are considered for the model parameters, which, for example, describe increasing load put on remaining components. Gamma priors are examined as well as priors out of a class of extended truncated Erlang distributions (ETED), which is introduced along with some properties. The choice of independent priors in both set-ups leads to respective independent, conjugate posterior distributions for the model parameters of sequential order statistics. Since, in practical applications, the model parameters will often be increasingly ordered, a multivariate prior is applied being the joint distribution of common ETED-order statistics. Whatever baseline distribution of the sequential order statistics is chosen, the joint posterior distribution turns out to be a Weinman multivariate exponential distribution. Posterior moments are given explicitly, and HPD credible sets for the model parameters are stated.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2010.03.017</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2010-09, Vol.101 (8), p.1826-1836
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_346145175
source ScienceDirect Freedom Collection 2022-2024
subjects Distribution theory
Erlang distribution
ETED
ETED Gamma distribution Erlang distribution Independent gamma priors Weinman multivariate exponential distribution
Exact sciences and technology
Gamma distribution
Independent gamma priors
Mathematics
Multivariate analysis
Nonparametric inference
Probability and statistics
Probability distribution
Probability theory and stochastic processes
Sciences and techniques of general use
Statistics
Studies
Weinman multivariate exponential distribution
title Sequential order statistics with an order statistics prior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20order%20statistics%20with%20an%20order%20statistics%20prior&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Burkschat,%20M.&rft.date=2010-09-01&rft.volume=101&rft.issue=8&rft.spage=1826&rft.epage=1836&rft.pages=1826-1836&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2010.03.017&rft_dat=%3Cproquest_cross%3E2043315091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-f81ce04f1e71ac1910a64cdf2df2b3916715d35e3f9ff7516ca9438989374a723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=346145175&rft_id=info:pmid/&rfr_iscdi=true