Loading…

Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks

The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the fram...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-06, Vol.107 (22), p.9938-9943
Main Authors: Tan, Jin Chong, Bennett, Thomas D, Cheetham, Anthony K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23
cites cdi_FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23
container_end_page 9943
container_issue 22
container_start_page 9938
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Tan, Jin Chong
Bennett, Thomas D
Cheetham, Anthony K
description The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. Notably, these properties are superior to those of other metal-organic frameworks (MOFs), such as MOF-5. In substituted imidazolate frameworks, our results show that their mechanical properties are mainly governed by the rigidity and bulkiness of the substituted organic linkages. The framework topology and the intricate pore morphology can also influence the degree of mechanical anisotropy. Our findings present the previously undescribed structure-mechanical property relationships pertaining to hybrid open frameworks that are important for the design and application of new MOF materials.
doi_str_mv 10.1073/pnas.1003205107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_365468290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25681708</jstor_id><sourcerecordid>25681708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23</originalsourceid><addsrcrecordid>eNpdkcFv0zAUhyMEYmVw5gRYu3BZ2bNjO_EFCVUMJk3iALtwsRzHbl2SONgOU_fX46xlBU62_D5_eu_9iuIlhncYqvJiHFTMNygJsPzwqFhgEHjJqYDHxQKAVMuaEnpSPItxCwCC1fC0OCFAK0E4XRR3q43pnVYdiilMOk3BnKPBpFsffqDkR9_59e4cqaFFow8-urRDxlqjU0R-QGljUG_0Rg33jjH40YTkTC5a9N34ziWn0VXvWnXnO5UMugyqN7M9Pi-eWNVF8-JwnhY3lx-_rT4vr798ulp9uF5qxlhaUmob2lpooaqVYgIq3jSNrlWraqsZ54KJErcto6IqG8yVbSrQLcOWNQ2xpDwt3u-949T0ptVmSEF1cgyuV2EnvXLy38rgNnLtf0lSC6C0zoK3B0HwPycTk-xd1Kbr1GD8FGVVloQTAjN59h-59VMY8nSy5IzymgjI0MUe0nmfMRj70AoGOacq51TlMdX84_XfEzzwf2LMwJsDMP886ipJiBSinDt7tSe2MflwNDBe4-q-84PBKi_VOrgob74SwCXgmgHPK_4NOCC-yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>365468290</pqid></control><display><type>article</type><title>Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks</title><source>Access via JSTOR</source><source>PubMed Central</source><creator>Tan, Jin Chong ; Bennett, Thomas D ; Cheetham, Anthony K</creator><creatorcontrib>Tan, Jin Chong ; Bennett, Thomas D ; Cheetham, Anthony K</creatorcontrib><description>The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. Notably, these properties are superior to those of other metal-organic frameworks (MOFs), such as MOF-5. In substituted imidazolate frameworks, our results show that their mechanical properties are mainly governed by the rigidity and bulkiness of the substituted organic linkages. The framework topology and the intricate pore morphology can also influence the degree of mechanical anisotropy. Our findings present the previously undescribed structure-mechanical property relationships pertaining to hybrid open frameworks that are important for the design and application of new MOF materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1003205107</identifier><identifier>PMID: 20479264</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Chemicals ; Crystal structure ; Crystals ; Elasticity ; Hardness ; Materials ; Mechanical properties ; Moduli of elasticity ; Morphology ; Network topologies ; Physical Sciences ; Porosity ; Single crystals ; Stiffness ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-06, Vol.107 (22), p.9938-9943</ispartof><rights>Copyright National Academy of Sciences Jun 1, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23</citedby><cites>FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25681708$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25681708$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20479264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Jin Chong</creatorcontrib><creatorcontrib>Bennett, Thomas D</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><title>Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. Notably, these properties are superior to those of other metal-organic frameworks (MOFs), such as MOF-5. In substituted imidazolate frameworks, our results show that their mechanical properties are mainly governed by the rigidity and bulkiness of the substituted organic linkages. The framework topology and the intricate pore morphology can also influence the degree of mechanical anisotropy. Our findings present the previously undescribed structure-mechanical property relationships pertaining to hybrid open frameworks that are important for the design and application of new MOF materials.</description><subject>Chemicals</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Elasticity</subject><subject>Hardness</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Moduli of elasticity</subject><subject>Morphology</subject><subject>Network topologies</subject><subject>Physical Sciences</subject><subject>Porosity</subject><subject>Single crystals</subject><subject>Stiffness</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkcFv0zAUhyMEYmVw5gRYu3BZ2bNjO_EFCVUMJk3iALtwsRzHbl2SONgOU_fX46xlBU62_D5_eu_9iuIlhncYqvJiHFTMNygJsPzwqFhgEHjJqYDHxQKAVMuaEnpSPItxCwCC1fC0OCFAK0E4XRR3q43pnVYdiilMOk3BnKPBpFsffqDkR9_59e4cqaFFow8-urRDxlqjU0R-QGljUG_0Rg33jjH40YTkTC5a9N34ziWn0VXvWnXnO5UMugyqN7M9Pi-eWNVF8-JwnhY3lx-_rT4vr798ulp9uF5qxlhaUmob2lpooaqVYgIq3jSNrlWraqsZ54KJErcto6IqG8yVbSrQLcOWNQ2xpDwt3u-949T0ptVmSEF1cgyuV2EnvXLy38rgNnLtf0lSC6C0zoK3B0HwPycTk-xd1Kbr1GD8FGVVloQTAjN59h-59VMY8nSy5IzymgjI0MUe0nmfMRj70AoGOacq51TlMdX84_XfEzzwf2LMwJsDMP886ipJiBSinDt7tSe2MflwNDBe4-q-84PBKi_VOrgob74SwCXgmgHPK_4NOCC-yg</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Tan, Jin Chong</creator><creator>Bennett, Thomas D</creator><creator>Cheetham, Anthony K</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100601</creationdate><title>Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks</title><author>Tan, Jin Chong ; Bennett, Thomas D ; Cheetham, Anthony K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemicals</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Elasticity</topic><topic>Hardness</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Moduli of elasticity</topic><topic>Morphology</topic><topic>Network topologies</topic><topic>Physical Sciences</topic><topic>Porosity</topic><topic>Single crystals</topic><topic>Stiffness</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jin Chong</creatorcontrib><creatorcontrib>Bennett, Thomas D</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Jin Chong</au><au>Bennett, Thomas D</au><au>Cheetham, Anthony K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>107</volume><issue>22</issue><spage>9938</spage><epage>9943</epage><pages>9938-9943</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. Notably, these properties are superior to those of other metal-organic frameworks (MOFs), such as MOF-5. In substituted imidazolate frameworks, our results show that their mechanical properties are mainly governed by the rigidity and bulkiness of the substituted organic linkages. The framework topology and the intricate pore morphology can also influence the degree of mechanical anisotropy. Our findings present the previously undescribed structure-mechanical property relationships pertaining to hybrid open frameworks that are important for the design and application of new MOF materials.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20479264</pmid><doi>10.1073/pnas.1003205107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-06, Vol.107 (22), p.9938-9943
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_365468290
source Access via JSTOR; PubMed Central
subjects Chemicals
Crystal structure
Crystals
Elasticity
Hardness
Materials
Mechanical properties
Moduli of elasticity
Morphology
Network topologies
Physical Sciences
Porosity
Single crystals
Stiffness
Topology
title Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20structure,%20network%20topology,%20and%20porosity%20effects%20on%20the%20mechanical%20properties%20of%20Zeolitic%20Imidazolate%20Frameworks&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tan,%20Jin%20Chong&rft.date=2010-06-01&rft.volume=107&rft.issue=22&rft.spage=9938&rft.epage=9943&rft.pages=9938-9943&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1003205107&rft_dat=%3Cjstor_proqu%3E25681708%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=365468290&rft_id=info:pmid/20479264&rft_jstor_id=25681708&rfr_iscdi=true