Loading…
Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks
The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the fram...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-06, Vol.107 (22), p.9938-9943 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23 |
container_end_page | 9943 |
container_issue | 22 |
container_start_page | 9938 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Tan, Jin Chong Bennett, Thomas D Cheetham, Anthony K |
description | The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. Notably, these properties are superior to those of other metal-organic frameworks (MOFs), such as MOF-5. In substituted imidazolate frameworks, our results show that their mechanical properties are mainly governed by the rigidity and bulkiness of the substituted organic linkages. The framework topology and the intricate pore morphology can also influence the degree of mechanical anisotropy. Our findings present the previously undescribed structure-mechanical property relationships pertaining to hybrid open frameworks that are important for the design and application of new MOF materials. |
doi_str_mv | 10.1073/pnas.1003205107 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_365468290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25681708</jstor_id><sourcerecordid>25681708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23</originalsourceid><addsrcrecordid>eNpdkcFv0zAUhyMEYmVw5gRYu3BZ2bNjO_EFCVUMJk3iALtwsRzHbl2SONgOU_fX46xlBU62_D5_eu_9iuIlhncYqvJiHFTMNygJsPzwqFhgEHjJqYDHxQKAVMuaEnpSPItxCwCC1fC0OCFAK0E4XRR3q43pnVYdiilMOk3BnKPBpFsffqDkR9_59e4cqaFFow8-urRDxlqjU0R-QGljUG_0Rg33jjH40YTkTC5a9N34ziWn0VXvWnXnO5UMugyqN7M9Pi-eWNVF8-JwnhY3lx-_rT4vr798ulp9uF5qxlhaUmob2lpooaqVYgIq3jSNrlWraqsZ54KJErcto6IqG8yVbSrQLcOWNQ2xpDwt3u-949T0ptVmSEF1cgyuV2EnvXLy38rgNnLtf0lSC6C0zoK3B0HwPycTk-xd1Kbr1GD8FGVVloQTAjN59h-59VMY8nSy5IzymgjI0MUe0nmfMRj70AoGOacq51TlMdX84_XfEzzwf2LMwJsDMP886ipJiBSinDt7tSe2MflwNDBe4-q-84PBKi_VOrgob74SwCXgmgHPK_4NOCC-yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>365468290</pqid></control><display><type>article</type><title>Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks</title><source>Access via JSTOR</source><source>PubMed Central</source><creator>Tan, Jin Chong ; Bennett, Thomas D ; Cheetham, Anthony K</creator><creatorcontrib>Tan, Jin Chong ; Bennett, Thomas D ; Cheetham, Anthony K</creatorcontrib><description>The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. Notably, these properties are superior to those of other metal-organic frameworks (MOFs), such as MOF-5. In substituted imidazolate frameworks, our results show that their mechanical properties are mainly governed by the rigidity and bulkiness of the substituted organic linkages. The framework topology and the intricate pore morphology can also influence the degree of mechanical anisotropy. Our findings present the previously undescribed structure-mechanical property relationships pertaining to hybrid open frameworks that are important for the design and application of new MOF materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1003205107</identifier><identifier>PMID: 20479264</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Chemicals ; Crystal structure ; Crystals ; Elasticity ; Hardness ; Materials ; Mechanical properties ; Moduli of elasticity ; Morphology ; Network topologies ; Physical Sciences ; Porosity ; Single crystals ; Stiffness ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-06, Vol.107 (22), p.9938-9943</ispartof><rights>Copyright National Academy of Sciences Jun 1, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23</citedby><cites>FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25681708$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25681708$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20479264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Jin Chong</creatorcontrib><creatorcontrib>Bennett, Thomas D</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><title>Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. Notably, these properties are superior to those of other metal-organic frameworks (MOFs), such as MOF-5. In substituted imidazolate frameworks, our results show that their mechanical properties are mainly governed by the rigidity and bulkiness of the substituted organic linkages. The framework topology and the intricate pore morphology can also influence the degree of mechanical anisotropy. Our findings present the previously undescribed structure-mechanical property relationships pertaining to hybrid open frameworks that are important for the design and application of new MOF materials.</description><subject>Chemicals</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Elasticity</subject><subject>Hardness</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Moduli of elasticity</subject><subject>Morphology</subject><subject>Network topologies</subject><subject>Physical Sciences</subject><subject>Porosity</subject><subject>Single crystals</subject><subject>Stiffness</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkcFv0zAUhyMEYmVw5gRYu3BZ2bNjO_EFCVUMJk3iALtwsRzHbl2SONgOU_fX46xlBU62_D5_eu_9iuIlhncYqvJiHFTMNygJsPzwqFhgEHjJqYDHxQKAVMuaEnpSPItxCwCC1fC0OCFAK0E4XRR3q43pnVYdiilMOk3BnKPBpFsffqDkR9_59e4cqaFFow8-urRDxlqjU0R-QGljUG_0Rg33jjH40YTkTC5a9N34ziWn0VXvWnXnO5UMugyqN7M9Pi-eWNVF8-JwnhY3lx-_rT4vr798ulp9uF5qxlhaUmob2lpooaqVYgIq3jSNrlWraqsZ54KJErcto6IqG8yVbSrQLcOWNQ2xpDwt3u-949T0ptVmSEF1cgyuV2EnvXLy38rgNnLtf0lSC6C0zoK3B0HwPycTk-xd1Kbr1GD8FGVVloQTAjN59h-59VMY8nSy5IzymgjI0MUe0nmfMRj70AoGOacq51TlMdX84_XfEzzwf2LMwJsDMP886ipJiBSinDt7tSe2MflwNDBe4-q-84PBKi_VOrgob74SwCXgmgHPK_4NOCC-yg</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Tan, Jin Chong</creator><creator>Bennett, Thomas D</creator><creator>Cheetham, Anthony K</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100601</creationdate><title>Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks</title><author>Tan, Jin Chong ; Bennett, Thomas D ; Cheetham, Anthony K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemicals</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Elasticity</topic><topic>Hardness</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Moduli of elasticity</topic><topic>Morphology</topic><topic>Network topologies</topic><topic>Physical Sciences</topic><topic>Porosity</topic><topic>Single crystals</topic><topic>Stiffness</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jin Chong</creatorcontrib><creatorcontrib>Bennett, Thomas D</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Jin Chong</au><au>Bennett, Thomas D</au><au>Cheetham, Anthony K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>107</volume><issue>22</issue><spage>9938</spage><epage>9943</epage><pages>9938-9943</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. Notably, these properties are superior to those of other metal-organic frameworks (MOFs), such as MOF-5. In substituted imidazolate frameworks, our results show that their mechanical properties are mainly governed by the rigidity and bulkiness of the substituted organic linkages. The framework topology and the intricate pore morphology can also influence the degree of mechanical anisotropy. Our findings present the previously undescribed structure-mechanical property relationships pertaining to hybrid open frameworks that are important for the design and application of new MOF materials.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20479264</pmid><doi>10.1073/pnas.1003205107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-06, Vol.107 (22), p.9938-9943 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_365468290 |
source | Access via JSTOR; PubMed Central |
subjects | Chemicals Crystal structure Crystals Elasticity Hardness Materials Mechanical properties Moduli of elasticity Morphology Network topologies Physical Sciences Porosity Single crystals Stiffness Topology |
title | Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20structure,%20network%20topology,%20and%20porosity%20effects%20on%20the%20mechanical%20properties%20of%20Zeolitic%20Imidazolate%20Frameworks&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tan,%20Jin%20Chong&rft.date=2010-06-01&rft.volume=107&rft.issue=22&rft.spage=9938&rft.epage=9943&rft.pages=9938-9943&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1003205107&rft_dat=%3Cjstor_proqu%3E25681708%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-44fb4df0d078aa59076bbbc8ada8fc56695931dd54973b16afb70cd51f5bb2f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=365468290&rft_id=info:pmid/20479264&rft_jstor_id=25681708&rfr_iscdi=true |