Loading…

Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel

Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure a...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-02, Vol.41 (2), p.397-408
Main Authors: Suh, Dong-Woo, Park, Seong-Jun, Lee, Tae-Ho, Oh, Chang-Seok, Kim, Sung-Joon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-009-0124-7