Loading…

Determination of Average Failure Time and Microstructural Analysis of Sn-Ag-Bi-In Solder Under Electromigration

Despite the extensive use of Sn-Ag-Cu as a Pb-free solder alloy, its melting point is significantly higher than that of eutectic Sn-Pb solder. Sn-Ag-Bi-In solder is an alternative Pb-free solder, with a melting temperature close to that of eutectic Sn-Pb. This study elucidates the electromigration b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2009-12, Vol.38 (12), p.2780-2785
Main Authors: Wu, Albert T., Sun, K.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the extensive use of Sn-Ag-Cu as a Pb-free solder alloy, its melting point is significantly higher than that of eutectic Sn-Pb solder. Sn-Ag-Bi-In solder is an alternative Pb-free solder, with a melting temperature close to that of eutectic Sn-Pb. This study elucidates the electromigration behavior of Sn-Ag-Bi-In solder and then compares the results with those of the Sn-Ag-Bi system. The behavior of Pb-free Sn-Ag-Bi-In solder strips under electromigration is examined by preparing them in Si (001) U-grooves. The samples are then tested under various temperatures and current densities. Although the compounds thicken near both electrodes with current stressing, the thickness at the anode exceeds that at the cathode. Experimental results of the average failure time indicate that Sn-Ag-Bi-In solder has a longer lifetime than does Sn-Ag-Bi, which is attributed to the ζ phase. Additionally, the ζ phase dissolved by the current in the early stage replenishes the outgoing atomic flux. These atomic fluxes also enhance the growth of abnormally large particles in the middle of the strips. Field-emission electron probe microanalysis (FE-EPMA) results indicate that the amount of indium is reduced after the ζ phase near the cathode is exhausted for extended current stressing time.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-009-0931-z