Loading…
Influence of Texture on Mechanical Behavior of Friction-Stir-Processed Magnesium Alloy
Friction stir processing (FSP) improves the mechanical properties of metallic materials. In this study, a magnesium alloy AZ31B was friction stir processed by using single and multiple pass. The friction-stir-processed magnesium alloy exhibits higher tensile strength and ductility in the transverse...
Saved in:
Published in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-01, Vol.41 (1), p.13-17 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Friction stir processing (FSP) improves the mechanical properties of metallic materials. In this study, a magnesium alloy AZ31B was friction stir processed by using single and multiple pass. The friction-stir-processed magnesium alloy exhibits higher tensile strength and ductility in the transverse direction (TD) compared to the longitudinal direction (LD). Both single pass and multiple (two) pass friction-stir-processed material show similar anisotropy in tensile properties, but the multiple pass friction-stir-processed material shows fine-grained microstructure with higher tensile strength and ductility. The tensile anisotropy in the friction-stir-processed AZ31B originated from the textured microstructure that evolved during FSP. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-009-0079-8 |