Loading…
Imaging of enzyme replacement therapy using PET
Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant ly...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-06, Vol.107 (24), p.10842-10847 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373 |
---|---|
cites | cdi_FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373 |
container_end_page | 10847 |
container_issue | 24 |
container_start_page | 10842 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Phenix, Christopher P Rempel, Brian P Colobong, Karen Doudet, Doris J Adam, Michael J Clarke, Lorne A Withers, Stephen G |
description | Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant lysosomal enzymes has been shown to be effective in altering the clinical course of Gaucher disease, Fabry disease, Hurler syndrome, Hunter syndrome, Maroteaux-Lamy syndrome, and Pompe disease, the recalcitrance of certain disease manifestations underscores important unanswered questions related to dosing regimes, tissue half-life of the recombinant enzyme and the ability of intravenously administered enzyme to reach critical sites of known disease pathology. We have developed an innovative method for tagging acid β-glucocerebrosidase (GCase), the recombinant enzyme formulated in Cerezyme® used to treat Gaucher disease, using an ¹⁸F-labeled substrate analogue that becomes trapped within the active site of the enzyme. Using micro-PET we show that the tissue distribution of injected enzyme can be imaged in a murine model and that the PET data correlate with tissue ¹⁸F counts. Further we show that PET imaging readily monitors pharmacokinetic changes effected by receptor blocking. The ability to ¹⁸F-label GCase to monitor the enzyme distribution and tissue half-life in vivo by PET provides a powerful research tool with an immediate clinical application to Gaucher disease and a clear path for application to other ERTs. |
doi_str_mv | 10.1073/pnas.1003247107 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_504001075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20723980</jstor_id><sourcerecordid>20723980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373</originalsourceid><addsrcrecordid>eNpVkctLAzEQxoMoWqtnT-rife3ktdlcBCm-QFCwPYd0d3bd0n2YbIX615vSWvUQJuT7zTfDF0LOKFxTUHzUNdaHG3AmVHjYIwMKmsaJ0LBPBgBMxalg4ogcez8HAC1TOCRHDCQXIlUDMnqqbVk1ZdQWETZfqxojh93CZlhj00f9OzrbraKlXzOvd5MTclDYhcfTbR2S6f3dZPwYP788PI1vn-NMyqSPbSIt0oJRmBV5qpWmmuYiszRFSQUKrpCpzGLGWJ4InCnEjHLJi3BmnCs-JDcb3245qzHPwjLOLkznqtq6lWltZf4rTfVuyvbTsFSDSnQwuNoauPZjib4383bpmrCzkSAAQloyQKMNlLnWe4fFbgAFsw7YrAM2vwGHjou_e-34n0QDEG2BdeevnTJMhBJ-IyDnG2Tu-9b9sVCM6xSCfrnRC9saW7rKm-kbA8qBpjIRVPNv9B2TqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>504001075</pqid></control><display><type>article</type><title>Imaging of enzyme replacement therapy using PET</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>PubMed Central</source><creator>Phenix, Christopher P ; Rempel, Brian P ; Colobong, Karen ; Doudet, Doris J ; Adam, Michael J ; Clarke, Lorne A ; Withers, Stephen G</creator><creatorcontrib>Phenix, Christopher P ; Rempel, Brian P ; Colobong, Karen ; Doudet, Doris J ; Adam, Michael J ; Clarke, Lorne A ; Withers, Stephen G</creatorcontrib><description>Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant lysosomal enzymes has been shown to be effective in altering the clinical course of Gaucher disease, Fabry disease, Hurler syndrome, Hunter syndrome, Maroteaux-Lamy syndrome, and Pompe disease, the recalcitrance of certain disease manifestations underscores important unanswered questions related to dosing regimes, tissue half-life of the recombinant enzyme and the ability of intravenously administered enzyme to reach critical sites of known disease pathology. We have developed an innovative method for tagging acid β-glucocerebrosidase (GCase), the recombinant enzyme formulated in Cerezyme® used to treat Gaucher disease, using an ¹⁸F-labeled substrate analogue that becomes trapped within the active site of the enzyme. Using micro-PET we show that the tissue distribution of injected enzyme can be imaged in a murine model and that the PET data correlate with tissue ¹⁸F counts. Further we show that PET imaging readily monitors pharmacokinetic changes effected by receptor blocking. The ability to ¹⁸F-label GCase to monitor the enzyme distribution and tissue half-life in vivo by PET provides a powerful research tool with an immediate clinical application to Gaucher disease and a clear path for application to other ERTs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1003247107</identifier><identifier>PMID: 20534487</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Amino Acid Substitution ; Animals ; beta-Glucosidase - genetics ; beta-Glucosidase - metabolism ; Biochemistry ; Biological Sciences ; Catalytic Domain ; Cells ; Clinical medicine ; Enzyme replacement therapy ; Enzymes ; Enzymes - pharmacokinetics ; Enzymes - therapeutic use ; Fluorides ; Fluorine Radioisotopes ; Gaucher disease ; Gaucher Disease - diagnostic imaging ; Gaucher Disease - drug therapy ; Gaucher Disease - enzymology ; Genetics ; Glucosylceramidase - pharmacokinetics ; Glucosylceramidase - therapeutic use ; Half-Life ; Humans ; Imaging ; Lectins, C-Type - antagonists & inhibitors ; Lectins, C-Type - metabolism ; Liver ; Mannose-Binding Lectins - antagonists & inhibitors ; Mannose-Binding Lectins - metabolism ; Mice ; Mice, Inbred C57BL ; Mutagenesis, Site-Directed ; Positron emission tomography ; Positron-Emission Tomography - methods ; Radiopharmaceuticals ; Receptors ; Receptors, Cell Surface - antagonists & inhibitors ; Receptors, Cell Surface - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - pharmacokinetics ; Recombinant Proteins - therapeutic use ; Rhizobium - enzymology ; Rhizobium - genetics ; Tissue Distribution</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-06, Vol.107 (24), p.10842-10847</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 15, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373</citedby><cites>FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20723980$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20723980$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20534487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phenix, Christopher P</creatorcontrib><creatorcontrib>Rempel, Brian P</creatorcontrib><creatorcontrib>Colobong, Karen</creatorcontrib><creatorcontrib>Doudet, Doris J</creatorcontrib><creatorcontrib>Adam, Michael J</creatorcontrib><creatorcontrib>Clarke, Lorne A</creatorcontrib><creatorcontrib>Withers, Stephen G</creatorcontrib><title>Imaging of enzyme replacement therapy using PET</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant lysosomal enzymes has been shown to be effective in altering the clinical course of Gaucher disease, Fabry disease, Hurler syndrome, Hunter syndrome, Maroteaux-Lamy syndrome, and Pompe disease, the recalcitrance of certain disease manifestations underscores important unanswered questions related to dosing regimes, tissue half-life of the recombinant enzyme and the ability of intravenously administered enzyme to reach critical sites of known disease pathology. We have developed an innovative method for tagging acid β-glucocerebrosidase (GCase), the recombinant enzyme formulated in Cerezyme® used to treat Gaucher disease, using an ¹⁸F-labeled substrate analogue that becomes trapped within the active site of the enzyme. Using micro-PET we show that the tissue distribution of injected enzyme can be imaged in a murine model and that the PET data correlate with tissue ¹⁸F counts. Further we show that PET imaging readily monitors pharmacokinetic changes effected by receptor blocking. The ability to ¹⁸F-label GCase to monitor the enzyme distribution and tissue half-life in vivo by PET provides a powerful research tool with an immediate clinical application to Gaucher disease and a clear path for application to other ERTs.</description><subject>Active sites</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>beta-Glucosidase - genetics</subject><subject>beta-Glucosidase - metabolism</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Catalytic Domain</subject><subject>Cells</subject><subject>Clinical medicine</subject><subject>Enzyme replacement therapy</subject><subject>Enzymes</subject><subject>Enzymes - pharmacokinetics</subject><subject>Enzymes - therapeutic use</subject><subject>Fluorides</subject><subject>Fluorine Radioisotopes</subject><subject>Gaucher disease</subject><subject>Gaucher Disease - diagnostic imaging</subject><subject>Gaucher Disease - drug therapy</subject><subject>Gaucher Disease - enzymology</subject><subject>Genetics</subject><subject>Glucosylceramidase - pharmacokinetics</subject><subject>Glucosylceramidase - therapeutic use</subject><subject>Half-Life</subject><subject>Humans</subject><subject>Imaging</subject><subject>Lectins, C-Type - antagonists & inhibitors</subject><subject>Lectins, C-Type - metabolism</subject><subject>Liver</subject><subject>Mannose-Binding Lectins - antagonists & inhibitors</subject><subject>Mannose-Binding Lectins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mutagenesis, Site-Directed</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radiopharmaceuticals</subject><subject>Receptors</subject><subject>Receptors, Cell Surface - antagonists & inhibitors</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - pharmacokinetics</subject><subject>Recombinant Proteins - therapeutic use</subject><subject>Rhizobium - enzymology</subject><subject>Rhizobium - genetics</subject><subject>Tissue Distribution</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkctLAzEQxoMoWqtnT-rife3ktdlcBCm-QFCwPYd0d3bd0n2YbIX615vSWvUQJuT7zTfDF0LOKFxTUHzUNdaHG3AmVHjYIwMKmsaJ0LBPBgBMxalg4ogcez8HAC1TOCRHDCQXIlUDMnqqbVk1ZdQWETZfqxojh93CZlhj00f9OzrbraKlXzOvd5MTclDYhcfTbR2S6f3dZPwYP788PI1vn-NMyqSPbSIt0oJRmBV5qpWmmuYiszRFSQUKrpCpzGLGWJ4InCnEjHLJi3BmnCs-JDcb3245qzHPwjLOLkznqtq6lWltZf4rTfVuyvbTsFSDSnQwuNoauPZjib4383bpmrCzkSAAQloyQKMNlLnWe4fFbgAFsw7YrAM2vwGHjou_e-34n0QDEG2BdeevnTJMhBJ-IyDnG2Tu-9b9sVCM6xSCfrnRC9saW7rKm-kbA8qBpjIRVPNv9B2TqA</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Phenix, Christopher P</creator><creator>Rempel, Brian P</creator><creator>Colobong, Karen</creator><creator>Doudet, Doris J</creator><creator>Adam, Michael J</creator><creator>Clarke, Lorne A</creator><creator>Withers, Stephen G</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100615</creationdate><title>Imaging of enzyme replacement therapy using PET</title><author>Phenix, Christopher P ; Rempel, Brian P ; Colobong, Karen ; Doudet, Doris J ; Adam, Michael J ; Clarke, Lorne A ; Withers, Stephen G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Active sites</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>beta-Glucosidase - genetics</topic><topic>beta-Glucosidase - metabolism</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Catalytic Domain</topic><topic>Cells</topic><topic>Clinical medicine</topic><topic>Enzyme replacement therapy</topic><topic>Enzymes</topic><topic>Enzymes - pharmacokinetics</topic><topic>Enzymes - therapeutic use</topic><topic>Fluorides</topic><topic>Fluorine Radioisotopes</topic><topic>Gaucher disease</topic><topic>Gaucher Disease - diagnostic imaging</topic><topic>Gaucher Disease - drug therapy</topic><topic>Gaucher Disease - enzymology</topic><topic>Genetics</topic><topic>Glucosylceramidase - pharmacokinetics</topic><topic>Glucosylceramidase - therapeutic use</topic><topic>Half-Life</topic><topic>Humans</topic><topic>Imaging</topic><topic>Lectins, C-Type - antagonists & inhibitors</topic><topic>Lectins, C-Type - metabolism</topic><topic>Liver</topic><topic>Mannose-Binding Lectins - antagonists & inhibitors</topic><topic>Mannose-Binding Lectins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mutagenesis, Site-Directed</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radiopharmaceuticals</topic><topic>Receptors</topic><topic>Receptors, Cell Surface - antagonists & inhibitors</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - pharmacokinetics</topic><topic>Recombinant Proteins - therapeutic use</topic><topic>Rhizobium - enzymology</topic><topic>Rhizobium - genetics</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phenix, Christopher P</creatorcontrib><creatorcontrib>Rempel, Brian P</creatorcontrib><creatorcontrib>Colobong, Karen</creatorcontrib><creatorcontrib>Doudet, Doris J</creatorcontrib><creatorcontrib>Adam, Michael J</creatorcontrib><creatorcontrib>Clarke, Lorne A</creatorcontrib><creatorcontrib>Withers, Stephen G</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phenix, Christopher P</au><au>Rempel, Brian P</au><au>Colobong, Karen</au><au>Doudet, Doris J</au><au>Adam, Michael J</au><au>Clarke, Lorne A</au><au>Withers, Stephen G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of enzyme replacement therapy using PET</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-06-15</date><risdate>2010</risdate><volume>107</volume><issue>24</issue><spage>10842</spage><epage>10847</epage><pages>10842-10847</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant lysosomal enzymes has been shown to be effective in altering the clinical course of Gaucher disease, Fabry disease, Hurler syndrome, Hunter syndrome, Maroteaux-Lamy syndrome, and Pompe disease, the recalcitrance of certain disease manifestations underscores important unanswered questions related to dosing regimes, tissue half-life of the recombinant enzyme and the ability of intravenously administered enzyme to reach critical sites of known disease pathology. We have developed an innovative method for tagging acid β-glucocerebrosidase (GCase), the recombinant enzyme formulated in Cerezyme® used to treat Gaucher disease, using an ¹⁸F-labeled substrate analogue that becomes trapped within the active site of the enzyme. Using micro-PET we show that the tissue distribution of injected enzyme can be imaged in a murine model and that the PET data correlate with tissue ¹⁸F counts. Further we show that PET imaging readily monitors pharmacokinetic changes effected by receptor blocking. The ability to ¹⁸F-label GCase to monitor the enzyme distribution and tissue half-life in vivo by PET provides a powerful research tool with an immediate clinical application to Gaucher disease and a clear path for application to other ERTs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20534487</pmid><doi>10.1073/pnas.1003247107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-06, Vol.107 (24), p.10842-10847 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_504001075 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; PubMed Central |
subjects | Active sites Amino Acid Substitution Animals beta-Glucosidase - genetics beta-Glucosidase - metabolism Biochemistry Biological Sciences Catalytic Domain Cells Clinical medicine Enzyme replacement therapy Enzymes Enzymes - pharmacokinetics Enzymes - therapeutic use Fluorides Fluorine Radioisotopes Gaucher disease Gaucher Disease - diagnostic imaging Gaucher Disease - drug therapy Gaucher Disease - enzymology Genetics Glucosylceramidase - pharmacokinetics Glucosylceramidase - therapeutic use Half-Life Humans Imaging Lectins, C-Type - antagonists & inhibitors Lectins, C-Type - metabolism Liver Mannose-Binding Lectins - antagonists & inhibitors Mannose-Binding Lectins - metabolism Mice Mice, Inbred C57BL Mutagenesis, Site-Directed Positron emission tomography Positron-Emission Tomography - methods Radiopharmaceuticals Receptors Receptors, Cell Surface - antagonists & inhibitors Receptors, Cell Surface - metabolism Recombinant Proteins - genetics Recombinant Proteins - pharmacokinetics Recombinant Proteins - therapeutic use Rhizobium - enzymology Rhizobium - genetics Tissue Distribution |
title | Imaging of enzyme replacement therapy using PET |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20enzyme%20replacement%20therapy%20using%20PET&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Phenix,%20Christopher%20P&rft.date=2010-06-15&rft.volume=107&rft.issue=24&rft.spage=10842&rft.epage=10847&rft.pages=10842-10847&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1003247107&rft_dat=%3Cjstor_proqu%3E20723980%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=504001075&rft_id=info:pmid/20534487&rft_jstor_id=20723980&rfr_iscdi=true |