Loading…

Imaging of enzyme replacement therapy using PET

Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant ly...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-06, Vol.107 (24), p.10842-10847
Main Authors: Phenix, Christopher P, Rempel, Brian P, Colobong, Karen, Doudet, Doris J, Adam, Michael J, Clarke, Lorne A, Withers, Stephen G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373
cites cdi_FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373
container_end_page 10847
container_issue 24
container_start_page 10842
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Phenix, Christopher P
Rempel, Brian P
Colobong, Karen
Doudet, Doris J
Adam, Michael J
Clarke, Lorne A
Withers, Stephen G
description Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant lysosomal enzymes has been shown to be effective in altering the clinical course of Gaucher disease, Fabry disease, Hurler syndrome, Hunter syndrome, Maroteaux-Lamy syndrome, and Pompe disease, the recalcitrance of certain disease manifestations underscores important unanswered questions related to dosing regimes, tissue half-life of the recombinant enzyme and the ability of intravenously administered enzyme to reach critical sites of known disease pathology. We have developed an innovative method for tagging acid β-glucocerebrosidase (GCase), the recombinant enzyme formulated in Cerezyme® used to treat Gaucher disease, using an ¹⁸F-labeled substrate analogue that becomes trapped within the active site of the enzyme. Using micro-PET we show that the tissue distribution of injected enzyme can be imaged in a murine model and that the PET data correlate with tissue ¹⁸F counts. Further we show that PET imaging readily monitors pharmacokinetic changes effected by receptor blocking. The ability to ¹⁸F-label GCase to monitor the enzyme distribution and tissue half-life in vivo by PET provides a powerful research tool with an immediate clinical application to Gaucher disease and a clear path for application to other ERTs.
doi_str_mv 10.1073/pnas.1003247107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_504001075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20723980</jstor_id><sourcerecordid>20723980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373</originalsourceid><addsrcrecordid>eNpVkctLAzEQxoMoWqtnT-rife3ktdlcBCm-QFCwPYd0d3bd0n2YbIX615vSWvUQJuT7zTfDF0LOKFxTUHzUNdaHG3AmVHjYIwMKmsaJ0LBPBgBMxalg4ogcez8HAC1TOCRHDCQXIlUDMnqqbVk1ZdQWETZfqxojh93CZlhj00f9OzrbraKlXzOvd5MTclDYhcfTbR2S6f3dZPwYP788PI1vn-NMyqSPbSIt0oJRmBV5qpWmmuYiszRFSQUKrpCpzGLGWJ4InCnEjHLJi3BmnCs-JDcb3245qzHPwjLOLkznqtq6lWltZf4rTfVuyvbTsFSDSnQwuNoauPZjib4383bpmrCzkSAAQloyQKMNlLnWe4fFbgAFsw7YrAM2vwGHjou_e-34n0QDEG2BdeevnTJMhBJ-IyDnG2Tu-9b9sVCM6xSCfrnRC9saW7rKm-kbA8qBpjIRVPNv9B2TqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>504001075</pqid></control><display><type>article</type><title>Imaging of enzyme replacement therapy using PET</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>PubMed Central</source><creator>Phenix, Christopher P ; Rempel, Brian P ; Colobong, Karen ; Doudet, Doris J ; Adam, Michael J ; Clarke, Lorne A ; Withers, Stephen G</creator><creatorcontrib>Phenix, Christopher P ; Rempel, Brian P ; Colobong, Karen ; Doudet, Doris J ; Adam, Michael J ; Clarke, Lorne A ; Withers, Stephen G</creatorcontrib><description>Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant lysosomal enzymes has been shown to be effective in altering the clinical course of Gaucher disease, Fabry disease, Hurler syndrome, Hunter syndrome, Maroteaux-Lamy syndrome, and Pompe disease, the recalcitrance of certain disease manifestations underscores important unanswered questions related to dosing regimes, tissue half-life of the recombinant enzyme and the ability of intravenously administered enzyme to reach critical sites of known disease pathology. We have developed an innovative method for tagging acid β-glucocerebrosidase (GCase), the recombinant enzyme formulated in Cerezyme® used to treat Gaucher disease, using an ¹⁸F-labeled substrate analogue that becomes trapped within the active site of the enzyme. Using micro-PET we show that the tissue distribution of injected enzyme can be imaged in a murine model and that the PET data correlate with tissue ¹⁸F counts. Further we show that PET imaging readily monitors pharmacokinetic changes effected by receptor blocking. The ability to ¹⁸F-label GCase to monitor the enzyme distribution and tissue half-life in vivo by PET provides a powerful research tool with an immediate clinical application to Gaucher disease and a clear path for application to other ERTs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1003247107</identifier><identifier>PMID: 20534487</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Amino Acid Substitution ; Animals ; beta-Glucosidase - genetics ; beta-Glucosidase - metabolism ; Biochemistry ; Biological Sciences ; Catalytic Domain ; Cells ; Clinical medicine ; Enzyme replacement therapy ; Enzymes ; Enzymes - pharmacokinetics ; Enzymes - therapeutic use ; Fluorides ; Fluorine Radioisotopes ; Gaucher disease ; Gaucher Disease - diagnostic imaging ; Gaucher Disease - drug therapy ; Gaucher Disease - enzymology ; Genetics ; Glucosylceramidase - pharmacokinetics ; Glucosylceramidase - therapeutic use ; Half-Life ; Humans ; Imaging ; Lectins, C-Type - antagonists &amp; inhibitors ; Lectins, C-Type - metabolism ; Liver ; Mannose-Binding Lectins - antagonists &amp; inhibitors ; Mannose-Binding Lectins - metabolism ; Mice ; Mice, Inbred C57BL ; Mutagenesis, Site-Directed ; Positron emission tomography ; Positron-Emission Tomography - methods ; Radiopharmaceuticals ; Receptors ; Receptors, Cell Surface - antagonists &amp; inhibitors ; Receptors, Cell Surface - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - pharmacokinetics ; Recombinant Proteins - therapeutic use ; Rhizobium - enzymology ; Rhizobium - genetics ; Tissue Distribution</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-06, Vol.107 (24), p.10842-10847</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 15, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373</citedby><cites>FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20723980$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20723980$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20534487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phenix, Christopher P</creatorcontrib><creatorcontrib>Rempel, Brian P</creatorcontrib><creatorcontrib>Colobong, Karen</creatorcontrib><creatorcontrib>Doudet, Doris J</creatorcontrib><creatorcontrib>Adam, Michael J</creatorcontrib><creatorcontrib>Clarke, Lorne A</creatorcontrib><creatorcontrib>Withers, Stephen G</creatorcontrib><title>Imaging of enzyme replacement therapy using PET</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant lysosomal enzymes has been shown to be effective in altering the clinical course of Gaucher disease, Fabry disease, Hurler syndrome, Hunter syndrome, Maroteaux-Lamy syndrome, and Pompe disease, the recalcitrance of certain disease manifestations underscores important unanswered questions related to dosing regimes, tissue half-life of the recombinant enzyme and the ability of intravenously administered enzyme to reach critical sites of known disease pathology. We have developed an innovative method for tagging acid β-glucocerebrosidase (GCase), the recombinant enzyme formulated in Cerezyme® used to treat Gaucher disease, using an ¹⁸F-labeled substrate analogue that becomes trapped within the active site of the enzyme. Using micro-PET we show that the tissue distribution of injected enzyme can be imaged in a murine model and that the PET data correlate with tissue ¹⁸F counts. Further we show that PET imaging readily monitors pharmacokinetic changes effected by receptor blocking. The ability to ¹⁸F-label GCase to monitor the enzyme distribution and tissue half-life in vivo by PET provides a powerful research tool with an immediate clinical application to Gaucher disease and a clear path for application to other ERTs.</description><subject>Active sites</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>beta-Glucosidase - genetics</subject><subject>beta-Glucosidase - metabolism</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Catalytic Domain</subject><subject>Cells</subject><subject>Clinical medicine</subject><subject>Enzyme replacement therapy</subject><subject>Enzymes</subject><subject>Enzymes - pharmacokinetics</subject><subject>Enzymes - therapeutic use</subject><subject>Fluorides</subject><subject>Fluorine Radioisotopes</subject><subject>Gaucher disease</subject><subject>Gaucher Disease - diagnostic imaging</subject><subject>Gaucher Disease - drug therapy</subject><subject>Gaucher Disease - enzymology</subject><subject>Genetics</subject><subject>Glucosylceramidase - pharmacokinetics</subject><subject>Glucosylceramidase - therapeutic use</subject><subject>Half-Life</subject><subject>Humans</subject><subject>Imaging</subject><subject>Lectins, C-Type - antagonists &amp; inhibitors</subject><subject>Lectins, C-Type - metabolism</subject><subject>Liver</subject><subject>Mannose-Binding Lectins - antagonists &amp; inhibitors</subject><subject>Mannose-Binding Lectins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mutagenesis, Site-Directed</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radiopharmaceuticals</subject><subject>Receptors</subject><subject>Receptors, Cell Surface - antagonists &amp; inhibitors</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - pharmacokinetics</subject><subject>Recombinant Proteins - therapeutic use</subject><subject>Rhizobium - enzymology</subject><subject>Rhizobium - genetics</subject><subject>Tissue Distribution</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkctLAzEQxoMoWqtnT-rife3ktdlcBCm-QFCwPYd0d3bd0n2YbIX615vSWvUQJuT7zTfDF0LOKFxTUHzUNdaHG3AmVHjYIwMKmsaJ0LBPBgBMxalg4ogcez8HAC1TOCRHDCQXIlUDMnqqbVk1ZdQWETZfqxojh93CZlhj00f9OzrbraKlXzOvd5MTclDYhcfTbR2S6f3dZPwYP788PI1vn-NMyqSPbSIt0oJRmBV5qpWmmuYiszRFSQUKrpCpzGLGWJ4InCnEjHLJi3BmnCs-JDcb3245qzHPwjLOLkznqtq6lWltZf4rTfVuyvbTsFSDSnQwuNoauPZjib4383bpmrCzkSAAQloyQKMNlLnWe4fFbgAFsw7YrAM2vwGHjou_e-34n0QDEG2BdeevnTJMhBJ-IyDnG2Tu-9b9sVCM6xSCfrnRC9saW7rKm-kbA8qBpjIRVPNv9B2TqA</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Phenix, Christopher P</creator><creator>Rempel, Brian P</creator><creator>Colobong, Karen</creator><creator>Doudet, Doris J</creator><creator>Adam, Michael J</creator><creator>Clarke, Lorne A</creator><creator>Withers, Stephen G</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100615</creationdate><title>Imaging of enzyme replacement therapy using PET</title><author>Phenix, Christopher P ; Rempel, Brian P ; Colobong, Karen ; Doudet, Doris J ; Adam, Michael J ; Clarke, Lorne A ; Withers, Stephen G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Active sites</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>beta-Glucosidase - genetics</topic><topic>beta-Glucosidase - metabolism</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Catalytic Domain</topic><topic>Cells</topic><topic>Clinical medicine</topic><topic>Enzyme replacement therapy</topic><topic>Enzymes</topic><topic>Enzymes - pharmacokinetics</topic><topic>Enzymes - therapeutic use</topic><topic>Fluorides</topic><topic>Fluorine Radioisotopes</topic><topic>Gaucher disease</topic><topic>Gaucher Disease - diagnostic imaging</topic><topic>Gaucher Disease - drug therapy</topic><topic>Gaucher Disease - enzymology</topic><topic>Genetics</topic><topic>Glucosylceramidase - pharmacokinetics</topic><topic>Glucosylceramidase - therapeutic use</topic><topic>Half-Life</topic><topic>Humans</topic><topic>Imaging</topic><topic>Lectins, C-Type - antagonists &amp; inhibitors</topic><topic>Lectins, C-Type - metabolism</topic><topic>Liver</topic><topic>Mannose-Binding Lectins - antagonists &amp; inhibitors</topic><topic>Mannose-Binding Lectins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mutagenesis, Site-Directed</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radiopharmaceuticals</topic><topic>Receptors</topic><topic>Receptors, Cell Surface - antagonists &amp; inhibitors</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - pharmacokinetics</topic><topic>Recombinant Proteins - therapeutic use</topic><topic>Rhizobium - enzymology</topic><topic>Rhizobium - genetics</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phenix, Christopher P</creatorcontrib><creatorcontrib>Rempel, Brian P</creatorcontrib><creatorcontrib>Colobong, Karen</creatorcontrib><creatorcontrib>Doudet, Doris J</creatorcontrib><creatorcontrib>Adam, Michael J</creatorcontrib><creatorcontrib>Clarke, Lorne A</creatorcontrib><creatorcontrib>Withers, Stephen G</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phenix, Christopher P</au><au>Rempel, Brian P</au><au>Colobong, Karen</au><au>Doudet, Doris J</au><au>Adam, Michael J</au><au>Clarke, Lorne A</au><au>Withers, Stephen G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of enzyme replacement therapy using PET</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-06-15</date><risdate>2010</risdate><volume>107</volume><issue>24</issue><spage>10842</spage><epage>10847</epage><pages>10842-10847</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant lysosomal enzymes has been shown to be effective in altering the clinical course of Gaucher disease, Fabry disease, Hurler syndrome, Hunter syndrome, Maroteaux-Lamy syndrome, and Pompe disease, the recalcitrance of certain disease manifestations underscores important unanswered questions related to dosing regimes, tissue half-life of the recombinant enzyme and the ability of intravenously administered enzyme to reach critical sites of known disease pathology. We have developed an innovative method for tagging acid β-glucocerebrosidase (GCase), the recombinant enzyme formulated in Cerezyme® used to treat Gaucher disease, using an ¹⁸F-labeled substrate analogue that becomes trapped within the active site of the enzyme. Using micro-PET we show that the tissue distribution of injected enzyme can be imaged in a murine model and that the PET data correlate with tissue ¹⁸F counts. Further we show that PET imaging readily monitors pharmacokinetic changes effected by receptor blocking. The ability to ¹⁸F-label GCase to monitor the enzyme distribution and tissue half-life in vivo by PET provides a powerful research tool with an immediate clinical application to Gaucher disease and a clear path for application to other ERTs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20534487</pmid><doi>10.1073/pnas.1003247107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-06, Vol.107 (24), p.10842-10847
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_504001075
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; PubMed Central
subjects Active sites
Amino Acid Substitution
Animals
beta-Glucosidase - genetics
beta-Glucosidase - metabolism
Biochemistry
Biological Sciences
Catalytic Domain
Cells
Clinical medicine
Enzyme replacement therapy
Enzymes
Enzymes - pharmacokinetics
Enzymes - therapeutic use
Fluorides
Fluorine Radioisotopes
Gaucher disease
Gaucher Disease - diagnostic imaging
Gaucher Disease - drug therapy
Gaucher Disease - enzymology
Genetics
Glucosylceramidase - pharmacokinetics
Glucosylceramidase - therapeutic use
Half-Life
Humans
Imaging
Lectins, C-Type - antagonists & inhibitors
Lectins, C-Type - metabolism
Liver
Mannose-Binding Lectins - antagonists & inhibitors
Mannose-Binding Lectins - metabolism
Mice
Mice, Inbred C57BL
Mutagenesis, Site-Directed
Positron emission tomography
Positron-Emission Tomography - methods
Radiopharmaceuticals
Receptors
Receptors, Cell Surface - antagonists & inhibitors
Receptors, Cell Surface - metabolism
Recombinant Proteins - genetics
Recombinant Proteins - pharmacokinetics
Recombinant Proteins - therapeutic use
Rhizobium - enzymology
Rhizobium - genetics
Tissue Distribution
title Imaging of enzyme replacement therapy using PET
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20enzyme%20replacement%20therapy%20using%20PET&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Phenix,%20Christopher%20P&rft.date=2010-06-15&rft.volume=107&rft.issue=24&rft.spage=10842&rft.epage=10847&rft.pages=10842-10847&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1003247107&rft_dat=%3Cjstor_proqu%3E20723980%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-a65ae1f210bfd8979191d4ca18e514e437e27caec22d64eb7eec1353f353b3373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=504001075&rft_id=info:pmid/20534487&rft_jstor_id=20723980&rfr_iscdi=true