Loading…

On one-homogeneous solutions to elliptic systems with spatial variable dependence in two dimensions

We extend a result from Phillips by showing that one-homogeneous solutions of certain elliptic systems in divergence form either do not exist or must be affine. The result is novel in two ways. Firstly, the system is allowed to depend (in a sufficiently smooth way) on the spatial variable x. Secondl...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2010-06, Vol.140 (3), p.449-475
Main Author: Bevan, Jonathan J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-56fa1ce96e6ff55c86d4dbda38a996bff63d02fe9540fcbbbd83763e816b82a73
cites
container_end_page 475
container_issue 3
container_start_page 449
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume 140
creator Bevan, Jonathan J.
description We extend a result from Phillips by showing that one-homogeneous solutions of certain elliptic systems in divergence form either do not exist or must be affine. The result is novel in two ways. Firstly, the system is allowed to depend (in a sufficiently smooth way) on the spatial variable x. Secondly, Phillips's original result is shown to apply to W one-homogeneous solutions, from which his treatment of Lipschitz solutions follows as a special case. A singular one-homogeneous solution to an elliptic system violating the hypotheses of the main theorem is constructed using a variational method.
doi_str_mv 10.1017/S0308210508000516
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_594826213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0308210508000516</cupid><sourcerecordid>2075922331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-56fa1ce96e6ff55c86d4dbda38a996bff63d02fe9540fcbbbd83763e816b82a73</originalsourceid><addsrcrecordid>eNp1kE9P3DAUxK2qSN1CP0BvFvdQO47_5FgB3SKthFpAcLOc-BlMEzvY3gLfnkSL6AH19A7zm5mnQegrJUeUUPntgjCiako4UYQQTsUHtKKNZJWkdfMRrRa5WvRP6HPO9zMjFJcr1J8HHANUd3GMtxAgbjPOcdgWH0PGJWIYBj8V3-P8nAuMGT_6cofzZIo3A_5rkjfdANjCBMFC6AH7gMtjxNaPEPISc4D2nBkyfHm9--jqx-nl8c9qc74-O_6-qXrWylJx4QztoRUgnOO8V8I2trOGKdO2onNOMEtqBy1viOu7rrOKScFAUdGp2ki2jw53uVOKD1vIRd_HbQpzpeZto2pRUzZDdAf1KeacwOkp-dGkZ02JXqbU76acPdXO4-cJnt4MJv3RQjLJtVj_0u3N5jc7ubnWC89eO8zYJW9v4d8n_295AfR4hwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>594826213</pqid></control><display><type>article</type><title>On one-homogeneous solutions to elliptic systems with spatial variable dependence in two dimensions</title><source>Cambridge University Press journals</source><creator>Bevan, Jonathan J.</creator><creatorcontrib>Bevan, Jonathan J.</creatorcontrib><description>We extend a result from Phillips by showing that one-homogeneous solutions of certain elliptic systems in divergence form either do not exist or must be affine. The result is novel in two ways. Firstly, the system is allowed to depend (in a sufficiently smooth way) on the spatial variable x. Secondly, Phillips's original result is shown to apply to W one-homogeneous solutions, from which his treatment of Lipschitz solutions follows as a special case. A singular one-homogeneous solution to an elliptic system violating the hypotheses of the main theorem is constructed using a variational method.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/S0308210508000516</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><subject>Hypothesis testing ; Mathematics ; Variables</subject><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2010-06, Vol.140 (3), p.449-475</ispartof><rights>Copyright © Royal Society of Edinburgh 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-56fa1ce96e6ff55c86d4dbda38a996bff63d02fe9540fcbbbd83763e816b82a73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210508000516/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,72703</link.rule.ids></links><search><creatorcontrib>Bevan, Jonathan J.</creatorcontrib><title>On one-homogeneous solutions to elliptic systems with spatial variable dependence in two dimensions</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>We extend a result from Phillips by showing that one-homogeneous solutions of certain elliptic systems in divergence form either do not exist or must be affine. The result is novel in two ways. Firstly, the system is allowed to depend (in a sufficiently smooth way) on the spatial variable x. Secondly, Phillips's original result is shown to apply to W one-homogeneous solutions, from which his treatment of Lipschitz solutions follows as a special case. A singular one-homogeneous solution to an elliptic system violating the hypotheses of the main theorem is constructed using a variational method.</description><subject>Hypothesis testing</subject><subject>Mathematics</subject><subject>Variables</subject><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE9P3DAUxK2qSN1CP0BvFvdQO47_5FgB3SKthFpAcLOc-BlMEzvY3gLfnkSL6AH19A7zm5mnQegrJUeUUPntgjCiako4UYQQTsUHtKKNZJWkdfMRrRa5WvRP6HPO9zMjFJcr1J8HHANUd3GMtxAgbjPOcdgWH0PGJWIYBj8V3-P8nAuMGT_6cofzZIo3A_5rkjfdANjCBMFC6AH7gMtjxNaPEPISc4D2nBkyfHm9--jqx-nl8c9qc74-O_6-qXrWylJx4QztoRUgnOO8V8I2trOGKdO2onNOMEtqBy1viOu7rrOKScFAUdGp2ki2jw53uVOKD1vIRd_HbQpzpeZto2pRUzZDdAf1KeacwOkp-dGkZ02JXqbU76acPdXO4-cJnt4MJv3RQjLJtVj_0u3N5jc7ubnWC89eO8zYJW9v4d8n_295AfR4hwg</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Bevan, Jonathan J.</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201006</creationdate><title>On one-homogeneous solutions to elliptic systems with spatial variable dependence in two dimensions</title><author>Bevan, Jonathan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-56fa1ce96e6ff55c86d4dbda38a996bff63d02fe9540fcbbbd83763e816b82a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Hypothesis testing</topic><topic>Mathematics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bevan, Jonathan J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bevan, Jonathan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On one-homogeneous solutions to elliptic systems with spatial variable dependence in two dimensions</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2010-06</date><risdate>2010</risdate><volume>140</volume><issue>3</issue><spage>449</spage><epage>475</epage><pages>449-475</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>We extend a result from Phillips by showing that one-homogeneous solutions of certain elliptic systems in divergence form either do not exist or must be affine. The result is novel in two ways. Firstly, the system is allowed to depend (in a sufficiently smooth way) on the spatial variable x. Secondly, Phillips's original result is shown to apply to W one-homogeneous solutions, from which his treatment of Lipschitz solutions follows as a special case. A singular one-homogeneous solution to an elliptic system violating the hypotheses of the main theorem is constructed using a variational method.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/S0308210508000516</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2010-06, Vol.140 (3), p.449-475
issn 0308-2105
1473-7124
language eng
recordid cdi_proquest_journals_594826213
source Cambridge University Press journals
subjects Hypothesis testing
Mathematics
Variables
title On one-homogeneous solutions to elliptic systems with spatial variable dependence in two dimensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20one-homogeneous%20solutions%20to%20elliptic%20systems%20with%20spatial%20variable%20dependence%20in%20two%20dimensions&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Bevan,%20Jonathan%20J.&rft.date=2010-06&rft.volume=140&rft.issue=3&rft.spage=449&rft.epage=475&rft.pages=449-475&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/S0308210508000516&rft_dat=%3Cproquest_cross%3E2075922331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-56fa1ce96e6ff55c86d4dbda38a996bff63d02fe9540fcbbbd83763e816b82a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=594826213&rft_id=info:pmid/&rft_cupid=10_1017_S0308210508000516&rfr_iscdi=true