Loading…

Trying to Discover Sufficient Condition Causes

Scientific human psychology is ultimately obligated to be able to describe, predict, and causally explain the psychological phenomena of every individual person. If all of this can be done in terms of the interrelations of linear combinations of variables, then our heavy reliance on statistical line...

Full description

Saved in:
Bibliographic Details
Published in:Methodology 2010, Vol.6 (2), p.59-70
Main Author: Krause, Merton S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a363t-65cb0fff5cde9a205eeb8f6859cc2c80c61d7ad124febadbd337fb6a9530bc5e3
cites cdi_FETCH-LOGICAL-a363t-65cb0fff5cde9a205eeb8f6859cc2c80c61d7ad124febadbd337fb6a9530bc5e3
container_end_page 70
container_issue 2
container_start_page 59
container_title Methodology
container_volume 6
creator Krause, Merton S
description Scientific human psychology is ultimately obligated to be able to describe, predict, and causally explain the psychological phenomena of every individual person. If all of this can be done in terms of the interrelations of linear combinations of variables, then our heavy reliance on statistical linear models will have been justified. But can it? The rather imperfect fits of such models to our data do not provide such justification, so perhaps more fundamental forms of data representation would be prudent to look into, given our modern computing capabilities. Such a form is offered in this paper: point-to-point mappings from independent-variable to dependent-variable hyperspaces. Its mathematical relationship to linear models is defined and explains why linear models may often not be capable of fitting psychological data.
doi_str_mv 10.1027/1614-2241/a000007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_614513040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>614513040</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-65cb0fff5cde9a205eeb8f6859cc2c80c61d7ad124febadbd337fb6a9530bc5e3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQxxdRsFY_gLcgePCQdh_ZPI4Sn1DwYD0vk8mubGmTuJsI_fZuaKjiXGb485vXn5BrRheM8mzJUpbEnCdsCXSM7ITMjtrpVLM8Z-fkwvsNpUlQshlZrN3eNp9R30YP1mP7rV30Phhj0eqmj8q2qW1v2yYqYfDaX5IzA1uvr6Y8Jx9Pj-vyJV69Pb-W96sYRCr6OJVYUWOMxFoXwKnUuspNmssCkWNOMWV1BjXjidEV1FUtRGaqFAopaIVSizm5OcztXPs1aN-rTTu4JqxU4RHJBE1ogNgBQtd677RRnbM7cHvFqBpdUePXanRATa6EnttpMHiErXHQoPXHRi4yxmTGA3d34KAD1fk9gustbrXHwbngjNrpWqWKK1n8Hvuf_Qv9AHUyfNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614513040</pqid></control><display><type>article</type><title>Trying to Discover Sufficient Condition Causes</title><source>PsycARTICLES</source><creator>Krause, Merton S</creator><creatorcontrib>Krause, Merton S</creatorcontrib><description>Scientific human psychology is ultimately obligated to be able to describe, predict, and causally explain the psychological phenomena of every individual person. If all of this can be done in terms of the interrelations of linear combinations of variables, then our heavy reliance on statistical linear models will have been justified. But can it? The rather imperfect fits of such models to our data do not provide such justification, so perhaps more fundamental forms of data representation would be prudent to look into, given our modern computing capabilities. Such a form is offered in this paper: point-to-point mappings from independent-variable to dependent-variable hyperspaces. Its mathematical relationship to linear models is defined and explains why linear models may often not be capable of fitting psychological data.</description><identifier>ISSN: 1614-1881</identifier><identifier>EISSN: 1614-2241</identifier><identifier>DOI: 10.1027/1614-2241/a000007</identifier><language>eng</language><publisher>Göttingen: Hogrefe Publishing</publisher><subject>Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Mathematical Modeling ; Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Statistical Data ; Statistics. Mathematics</subject><ispartof>Methodology, 2010, Vol.6 (2), p.59-70</ispartof><rights>2010 Hogrefe Publishing</rights><rights>2015 INIST-CNRS</rights><rights>2010, Hogrefe Publishing</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a363t-65cb0fff5cde9a205eeb8f6859cc2c80c61d7ad124febadbd337fb6a9530bc5e3</citedby><cites>FETCH-LOGICAL-a363t-65cb0fff5cde9a205eeb8f6859cc2c80c61d7ad124febadbd337fb6a9530bc5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23711572$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krause, Merton S</creatorcontrib><title>Trying to Discover Sufficient Condition Causes</title><title>Methodology</title><description>Scientific human psychology is ultimately obligated to be able to describe, predict, and causally explain the psychological phenomena of every individual person. If all of this can be done in terms of the interrelations of linear combinations of variables, then our heavy reliance on statistical linear models will have been justified. But can it? The rather imperfect fits of such models to our data do not provide such justification, so perhaps more fundamental forms of data representation would be prudent to look into, given our modern computing capabilities. Such a form is offered in this paper: point-to-point mappings from independent-variable to dependent-variable hyperspaces. Its mathematical relationship to linear models is defined and explains why linear models may often not be capable of fitting psychological data.</description><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mathematical Modeling</subject><subject>Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Statistical Data</subject><subject>Statistics. Mathematics</subject><issn>1614-1881</issn><issn>1614-2241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AQxxdRsFY_gLcgePCQdh_ZPI4Sn1DwYD0vk8mubGmTuJsI_fZuaKjiXGb485vXn5BrRheM8mzJUpbEnCdsCXSM7ITMjtrpVLM8Z-fkwvsNpUlQshlZrN3eNp9R30YP1mP7rV30Phhj0eqmj8q2qW1v2yYqYfDaX5IzA1uvr6Y8Jx9Pj-vyJV69Pb-W96sYRCr6OJVYUWOMxFoXwKnUuspNmssCkWNOMWV1BjXjidEV1FUtRGaqFAopaIVSizm5OcztXPs1aN-rTTu4JqxU4RHJBE1ogNgBQtd677RRnbM7cHvFqBpdUePXanRATa6EnttpMHiErXHQoPXHRi4yxmTGA3d34KAD1fk9gustbrXHwbngjNrpWqWKK1n8Hvuf_Qv9AHUyfNo</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Krause, Merton S</creator><general>Hogrefe Publishing</general><general>Hogrefe</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope></search><sort><creationdate>2010</creationdate><title>Trying to Discover Sufficient Condition Causes</title><author>Krause, Merton S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-65cb0fff5cde9a205eeb8f6859cc2c80c61d7ad124febadbd337fb6a9530bc5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mathematical Modeling</topic><topic>Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Statistical Data</topic><topic>Statistics. Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krause, Merton S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>PsycArticles (via ProQuest)</collection><collection>ProQuest One Psychology</collection><jtitle>Methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krause, Merton S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trying to Discover Sufficient Condition Causes</atitle><jtitle>Methodology</jtitle><date>2010</date><risdate>2010</risdate><volume>6</volume><issue>2</issue><spage>59</spage><epage>70</epage><pages>59-70</pages><issn>1614-1881</issn><eissn>1614-2241</eissn><abstract>Scientific human psychology is ultimately obligated to be able to describe, predict, and causally explain the psychological phenomena of every individual person. If all of this can be done in terms of the interrelations of linear combinations of variables, then our heavy reliance on statistical linear models will have been justified. But can it? The rather imperfect fits of such models to our data do not provide such justification, so perhaps more fundamental forms of data representation would be prudent to look into, given our modern computing capabilities. Such a form is offered in this paper: point-to-point mappings from independent-variable to dependent-variable hyperspaces. Its mathematical relationship to linear models is defined and explains why linear models may often not be capable of fitting psychological data.</abstract><cop>Göttingen</cop><pub>Hogrefe Publishing</pub><doi>10.1027/1614-2241/a000007</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-1881
ispartof Methodology, 2010, Vol.6 (2), p.59-70
issn 1614-1881
1614-2241
language eng
recordid cdi_proquest_journals_614513040
source PsycARTICLES
subjects Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Mathematical Modeling
Psychology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics. Statistics. Methodology
Statistical Data
Statistics. Mathematics
title Trying to Discover Sufficient Condition Causes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trying%20to%20Discover%20Sufficient%20Condition%20Causes&rft.jtitle=Methodology&rft.au=Krause,%20Merton%20S&rft.date=2010&rft.volume=6&rft.issue=2&rft.spage=59&rft.epage=70&rft.pages=59-70&rft.issn=1614-1881&rft.eissn=1614-2241&rft_id=info:doi/10.1027/1614-2241/a000007&rft_dat=%3Cproquest_cross%3E614513040%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a363t-65cb0fff5cde9a205eeb8f6859cc2c80c61d7ad124febadbd337fb6a9530bc5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=614513040&rft_id=info:pmid/&rfr_iscdi=true