Loading…

Changes induced by hyperosmotic mannitol in cerebral endothelial cells: an atomic force microscopic study

Understanding the reaction of living cells in response to different extracellular stimuli, such as hyperosmotic stress, is of primordial importance. Mannitol, a cell-impermeable non-toxic alcohol, has been used successfully for reversible opening of the blood-brain barrier in hyperosmotic concentrat...

Full description

Saved in:
Bibliographic Details
Published in:European biophysics journal 2007-02, Vol.36 (2), p.113-120
Main Authors: Bálint, Zoltán, Krizbai, István A, Wilhelm, Imola, Farkas, Attila E, Párducz, Arpád, Szegletes, Zsolt, Váró, György
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding the reaction of living cells in response to different extracellular stimuli, such as hyperosmotic stress, is of primordial importance. Mannitol, a cell-impermeable non-toxic alcohol, has been used successfully for reversible opening of the blood-brain barrier in hyperosmotic concentrations. In this study we analyzed the effect of hyperosmotic mannitol on the shape and surface structure of living cerebral endothelial cells by atomic force microscope imaging technique. Addition of clinically relevant concentrations of mannitol to the culture medium of the confluent cells induced a decrease of about 40% in the observed height of the cells. This change was consistent both at the nuclear and peripheral region of the cells. After mannitol treatment even a close examination of the contact surface between the cells did not reveal gap between them. We could observe the appearance of surface protrusions of about 100 nm. By force measurements the elasticity of the cells were estimated. While the Young's modulus of the control cells appeared to be 8.04 +/- 0.12 kPa, for the mannitol-treated cells it decreased to an estimated value of 0.93 +/- 0.04 kPa which points to large structural changes inside the cell.
ISSN:0175-7571
1432-1017
DOI:10.1007/s00249-006-0112-4