Loading…

Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth

Phospholipase D (PLD) and its product phosphatidic acid (PA) are involved in a number of signalling pathways regulating cell proliferation, membrane vesicle trafficking and defence responses in eukaryotic cells. Here we report that PLD and PA have a role in the process of polarised plant cell expans...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2003-05, Vol.217 (1), p.122-130
Main Authors: POTOCKY, Martin, ELIAS, Marek, PROFOTOVA, Bronislava, NOVOTNA, Zuzana, VALENTOVA, Olga, ZARSKY, Viktor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phospholipase D (PLD) and its product phosphatidic acid (PA) are involved in a number of signalling pathways regulating cell proliferation, membrane vesicle trafficking and defence responses in eukaryotic cells. Here we report that PLD and PA have a role in the process of polarised plant cell expansion as represented by pollen tube growth. Both phosphatidylinositol-4,5-bisphosphate-dependent and independent PLD activities were identified in pollen tube extracts, and activity levels during pollen tube germination and growth were measured. PLD-mediated PA production in vivo can be blocked by primary alcohols, which serve as a substrate for the transphosphatidylation reaction. Both pollen germination and tube growth are stopped in the presence 0.5% 1-butanol, whereas secondary and tertiary isomers do not show any effect. This inhibition could be overcome by addition of exogenous PA-containing liposomes. In the absence of n-butanol, addition of a micromolar concentration of PA specifically stimulates pollen germination and tube elongation. Furthermore, a recently established link between PLD and microtubule dynamics was supported by taxol-mediated partial rescue of the 1-butanol-inhibited pollen tubes. The potential signalling role for PLD-derived PA in plant cell expansion is discussed.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-002-0965-4