Loading…

A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS

We propose a scalable distributed diagnosis approach for large-scale self-diagnosable wireless adhoc networks that form an arbitrary network topology. The diagnosis strategy assumes multiple initiators for the diagnosis process in contrast to a single initiator centralized bottleneck and also avoids...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computers & applications 2009-10, Vol.31 (4), p.1
Main Authors: Khilar, P.M., Mahapatra, S.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page 1
container_title International journal of computers & applications
container_volume 31
creator Khilar, P.M.
Mahapatra, S.
description We propose a scalable distributed diagnosis approach for large-scale self-diagnosable wireless adhoc networks that form an arbitrary network topology. The diagnosis strategy assumes multiple initiators for the diagnosis process in contrast to a single initiator centralized bottleneck and also avoids a costly distributed diagnosis algorithm where every node is an initiator of the diagnosis process. Key results of this paper include realistic testing mechanism and fault models, an efficient and scalable distributed diagnosis algorithm using clustering, a global diagnosis strategy of all the nodes. The proposed approach has been evaluated analytically as well as through simulation. The diagnosis latency and message complexity of the algorithm was found to be O(ΔTx + lcTf + max(Tout1, Tout2)) and O(ncCs) respectively. The result shows that the diagnosis performance is better using the proposed clustering approach than non-clustering approaches. [PUBLICATION ABSTRACT]
doi_str_mv 10.2316/Journal.202.2009.4.202-2513
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_734727110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099167481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c790-6867ae28e206a6c05b578de7bd768d91e5f59699137eccf398b92577819d30203</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsFbfYdB16vwk84OrIZ0mkdiUTFVcyJAmE7BU2yZ24c538A19EhPShYvLPVzOvZfzAXCD0YRQzG7vt4fmo9hMCCJdITnxe-mRANMTMMKSBB5H3D_9p8_BRduuEfI5YWIEXhWcZ086hXGic5WHcRKqFIbpo1nqPJlHUC0WeabCGM6yHE4TFc0z089TlUf69_sHmm5Bw-ck16k2BqppnIXQvHT7D-YSnNXFpnVXxz4Gy5lehrGXZlH_yCu5RB4TjBeOCEcQK1iJglXAReX4quJMVBK7oA4kkxJT7sqyplKsujScCywrigiiY3A9nN012_3BtZ92PYBpLaddUI5xb7obTGWzbdvG1XbXvL0XzZfFyPY07ZGm7RDanqb1B9nRpH9V32J3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734727110</pqid></control><display><type>article</type><title>A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS</title><source>Taylor and Francis Science and Technology Collection</source><creator>Khilar, P.M. ; Mahapatra, S.</creator><creatorcontrib>Khilar, P.M. ; Mahapatra, S.</creatorcontrib><description>We propose a scalable distributed diagnosis approach for large-scale self-diagnosable wireless adhoc networks that form an arbitrary network topology. The diagnosis strategy assumes multiple initiators for the diagnosis process in contrast to a single initiator centralized bottleneck and also avoids a costly distributed diagnosis algorithm where every node is an initiator of the diagnosis process. Key results of this paper include realistic testing mechanism and fault models, an efficient and scalable distributed diagnosis algorithm using clustering, a global diagnosis strategy of all the nodes. The proposed approach has been evaluated analytically as well as through simulation. The diagnosis latency and message complexity of the algorithm was found to be O(ΔTx + lcTf + max(Tout1, Tout2)) and O(ncCs) respectively. The result shows that the diagnosis performance is better using the proposed clustering approach than non-clustering approaches. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1925-7074</identifier><identifier>ISSN: 1206-212X</identifier><identifier>EISSN: 1925-7074</identifier><identifier>DOI: 10.2316/Journal.202.2009.4.202-2513</identifier><language>eng</language><publisher>Calgary: Taylor &amp; Francis Ltd</publisher><subject>Algorithms ; Fault diagnosis ; Network topologies ; Scalability ; Simulation ; Wireless networks</subject><ispartof>International journal of computers &amp; applications, 2009-10, Vol.31 (4), p.1</ispartof><rights>Copyright ACTA Press 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khilar, P.M.</creatorcontrib><creatorcontrib>Mahapatra, S.</creatorcontrib><title>A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS</title><title>International journal of computers &amp; applications</title><description>We propose a scalable distributed diagnosis approach for large-scale self-diagnosable wireless adhoc networks that form an arbitrary network topology. The diagnosis strategy assumes multiple initiators for the diagnosis process in contrast to a single initiator centralized bottleneck and also avoids a costly distributed diagnosis algorithm where every node is an initiator of the diagnosis process. Key results of this paper include realistic testing mechanism and fault models, an efficient and scalable distributed diagnosis algorithm using clustering, a global diagnosis strategy of all the nodes. The proposed approach has been evaluated analytically as well as through simulation. The diagnosis latency and message complexity of the algorithm was found to be O(ΔTx + lcTf + max(Tout1, Tout2)) and O(ncCs) respectively. The result shows that the diagnosis performance is better using the proposed clustering approach than non-clustering approaches. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Fault diagnosis</subject><subject>Network topologies</subject><subject>Scalability</subject><subject>Simulation</subject><subject>Wireless networks</subject><issn>1925-7074</issn><issn>1206-212X</issn><issn>1925-7074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Kw0AUhQdRsFbfYdB16vwk84OrIZ0mkdiUTFVcyJAmE7BU2yZ24c538A19EhPShYvLPVzOvZfzAXCD0YRQzG7vt4fmo9hMCCJdITnxe-mRANMTMMKSBB5H3D_9p8_BRduuEfI5YWIEXhWcZ086hXGic5WHcRKqFIbpo1nqPJlHUC0WeabCGM6yHE4TFc0z089TlUf69_sHmm5Bw-ck16k2BqppnIXQvHT7D-YSnNXFpnVXxz4Gy5lehrGXZlH_yCu5RB4TjBeOCEcQK1iJglXAReX4quJMVBK7oA4kkxJT7sqyplKsujScCywrigiiY3A9nN012_3BtZ92PYBpLaddUI5xb7obTGWzbdvG1XbXvL0XzZfFyPY07ZGm7RDanqb1B9nRpH9V32J3</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Khilar, P.M.</creator><creator>Mahapatra, S.</creator><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS</title><author>Khilar, P.M. ; Mahapatra, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c790-6867ae28e206a6c05b578de7bd768d91e5f59699137eccf398b92577819d30203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Fault diagnosis</topic><topic>Network topologies</topic><topic>Scalability</topic><topic>Simulation</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khilar, P.M.</creatorcontrib><creatorcontrib>Mahapatra, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computers &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khilar, P.M.</au><au>Mahapatra, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS</atitle><jtitle>International journal of computers &amp; applications</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>31</volume><issue>4</issue><spage>1</spage><pages>1-</pages><issn>1925-7074</issn><issn>1206-212X</issn><eissn>1925-7074</eissn><abstract>We propose a scalable distributed diagnosis approach for large-scale self-diagnosable wireless adhoc networks that form an arbitrary network topology. The diagnosis strategy assumes multiple initiators for the diagnosis process in contrast to a single initiator centralized bottleneck and also avoids a costly distributed diagnosis algorithm where every node is an initiator of the diagnosis process. Key results of this paper include realistic testing mechanism and fault models, an efficient and scalable distributed diagnosis algorithm using clustering, a global diagnosis strategy of all the nodes. The proposed approach has been evaluated analytically as well as through simulation. The diagnosis latency and message complexity of the algorithm was found to be O(ΔTx + lcTf + max(Tout1, Tout2)) and O(ncCs) respectively. The result shows that the diagnosis performance is better using the proposed clustering approach than non-clustering approaches. [PUBLICATION ABSTRACT]</abstract><cop>Calgary</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.2316/Journal.202.2009.4.202-2513</doi></addata></record>
fulltext fulltext
identifier ISSN: 1925-7074
ispartof International journal of computers & applications, 2009-10, Vol.31 (4), p.1
issn 1925-7074
1206-212X
1925-7074
language eng
recordid cdi_proquest_journals_734727110
source Taylor and Francis Science and Technology Collection
subjects Algorithms
Fault diagnosis
Network topologies
Scalability
Simulation
Wireless networks
title A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NOVEL%20HIERARCHICAL%20CLUSTERING%20APPROACH%20FOR%20DIAGNOSING%20LARGE%E2%80%93%20SCALE%20WIRELESS%20ADHOC%20SYSTEMS&rft.jtitle=International%20journal%20of%20computers%20&%20applications&rft.au=Khilar,%20P.M.&rft.date=2009-10-01&rft.volume=31&rft.issue=4&rft.spage=1&rft.pages=1-&rft.issn=1925-7074&rft.eissn=1925-7074&rft_id=info:doi/10.2316/Journal.202.2009.4.202-2513&rft_dat=%3Cproquest_cross%3E2099167481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c790-6867ae28e206a6c05b578de7bd768d91e5f59699137eccf398b92577819d30203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734727110&rft_id=info:pmid/&rfr_iscdi=true