Loading…
A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS
We propose a scalable distributed diagnosis approach for large-scale self-diagnosable wireless adhoc networks that form an arbitrary network topology. The diagnosis strategy assumes multiple initiators for the diagnosis process in contrast to a single initiator centralized bottleneck and also avoids...
Saved in:
Published in: | International journal of computers & applications 2009-10, Vol.31 (4), p.1 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 4 |
container_start_page | 1 |
container_title | International journal of computers & applications |
container_volume | 31 |
creator | Khilar, P.M. Mahapatra, S. |
description | We propose a scalable distributed diagnosis approach for large-scale self-diagnosable wireless adhoc networks that form an arbitrary network topology. The diagnosis strategy assumes multiple initiators for the diagnosis process in contrast to a single initiator centralized bottleneck and also avoids a costly distributed diagnosis algorithm where every node is an initiator of the diagnosis process. Key results of this paper include realistic testing mechanism and fault models, an efficient and scalable distributed diagnosis algorithm using clustering, a global diagnosis strategy of all the nodes. The proposed approach has been evaluated analytically as well as through simulation. The diagnosis latency and message complexity of the algorithm was found to be O(ΔTx + lcTf + max(Tout1, Tout2)) and O(ncCs) respectively. The result shows that the diagnosis performance is better using the proposed clustering approach than non-clustering approaches. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.2316/Journal.202.2009.4.202-2513 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_734727110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099167481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c790-6867ae28e206a6c05b578de7bd768d91e5f59699137eccf398b92577819d30203</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsFbfYdB16vwk84OrIZ0mkdiUTFVcyJAmE7BU2yZ24c538A19EhPShYvLPVzOvZfzAXCD0YRQzG7vt4fmo9hMCCJdITnxe-mRANMTMMKSBB5H3D_9p8_BRduuEfI5YWIEXhWcZ086hXGic5WHcRKqFIbpo1nqPJlHUC0WeabCGM6yHE4TFc0z089TlUf69_sHmm5Bw-ck16k2BqppnIXQvHT7D-YSnNXFpnVXxz4Gy5lehrGXZlH_yCu5RB4TjBeOCEcQK1iJglXAReX4quJMVBK7oA4kkxJT7sqyplKsujScCywrigiiY3A9nN012_3BtZ92PYBpLaddUI5xb7obTGWzbdvG1XbXvL0XzZfFyPY07ZGm7RDanqb1B9nRpH9V32J3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734727110</pqid></control><display><type>article</type><title>A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS</title><source>Taylor and Francis Science and Technology Collection</source><creator>Khilar, P.M. ; Mahapatra, S.</creator><creatorcontrib>Khilar, P.M. ; Mahapatra, S.</creatorcontrib><description>We propose a scalable distributed diagnosis approach for large-scale self-diagnosable wireless adhoc networks that form an arbitrary network topology. The diagnosis strategy assumes multiple initiators for the diagnosis process in contrast to a single initiator centralized bottleneck and also avoids a costly distributed diagnosis algorithm where every node is an initiator of the diagnosis process. Key results of this paper include realistic testing mechanism and fault models, an efficient and scalable distributed diagnosis algorithm using clustering, a global diagnosis strategy of all the nodes. The proposed approach has been evaluated analytically as well as through simulation. The diagnosis latency and message complexity of the algorithm was found to be O(ΔTx + lcTf + max(Tout1, Tout2)) and O(ncCs) respectively. The result shows that the diagnosis performance is better using the proposed clustering approach than non-clustering approaches. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1925-7074</identifier><identifier>ISSN: 1206-212X</identifier><identifier>EISSN: 1925-7074</identifier><identifier>DOI: 10.2316/Journal.202.2009.4.202-2513</identifier><language>eng</language><publisher>Calgary: Taylor & Francis Ltd</publisher><subject>Algorithms ; Fault diagnosis ; Network topologies ; Scalability ; Simulation ; Wireless networks</subject><ispartof>International journal of computers & applications, 2009-10, Vol.31 (4), p.1</ispartof><rights>Copyright ACTA Press 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khilar, P.M.</creatorcontrib><creatorcontrib>Mahapatra, S.</creatorcontrib><title>A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS</title><title>International journal of computers & applications</title><description>We propose a scalable distributed diagnosis approach for large-scale self-diagnosable wireless adhoc networks that form an arbitrary network topology. The diagnosis strategy assumes multiple initiators for the diagnosis process in contrast to a single initiator centralized bottleneck and also avoids a costly distributed diagnosis algorithm where every node is an initiator of the diagnosis process. Key results of this paper include realistic testing mechanism and fault models, an efficient and scalable distributed diagnosis algorithm using clustering, a global diagnosis strategy of all the nodes. The proposed approach has been evaluated analytically as well as through simulation. The diagnosis latency and message complexity of the algorithm was found to be O(ΔTx + lcTf + max(Tout1, Tout2)) and O(ncCs) respectively. The result shows that the diagnosis performance is better using the proposed clustering approach than non-clustering approaches. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Fault diagnosis</subject><subject>Network topologies</subject><subject>Scalability</subject><subject>Simulation</subject><subject>Wireless networks</subject><issn>1925-7074</issn><issn>1206-212X</issn><issn>1925-7074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Kw0AUhQdRsFbfYdB16vwk84OrIZ0mkdiUTFVcyJAmE7BU2yZ24c538A19EhPShYvLPVzOvZfzAXCD0YRQzG7vt4fmo9hMCCJdITnxe-mRANMTMMKSBB5H3D_9p8_BRduuEfI5YWIEXhWcZ086hXGic5WHcRKqFIbpo1nqPJlHUC0WeabCGM6yHE4TFc0z089TlUf69_sHmm5Bw-ck16k2BqppnIXQvHT7D-YSnNXFpnVXxz4Gy5lehrGXZlH_yCu5RB4TjBeOCEcQK1iJglXAReX4quJMVBK7oA4kkxJT7sqyplKsujScCywrigiiY3A9nN012_3BtZ92PYBpLaddUI5xb7obTGWzbdvG1XbXvL0XzZfFyPY07ZGm7RDanqb1B9nRpH9V32J3</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Khilar, P.M.</creator><creator>Mahapatra, S.</creator><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS</title><author>Khilar, P.M. ; Mahapatra, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c790-6867ae28e206a6c05b578de7bd768d91e5f59699137eccf398b92577819d30203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Fault diagnosis</topic><topic>Network topologies</topic><topic>Scalability</topic><topic>Simulation</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khilar, P.M.</creatorcontrib><creatorcontrib>Mahapatra, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computers & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khilar, P.M.</au><au>Mahapatra, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS</atitle><jtitle>International journal of computers & applications</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>31</volume><issue>4</issue><spage>1</spage><pages>1-</pages><issn>1925-7074</issn><issn>1206-212X</issn><eissn>1925-7074</eissn><abstract>We propose a scalable distributed diagnosis approach for large-scale self-diagnosable wireless adhoc networks that form an arbitrary network topology. The diagnosis strategy assumes multiple initiators for the diagnosis process in contrast to a single initiator centralized bottleneck and also avoids a costly distributed diagnosis algorithm where every node is an initiator of the diagnosis process. Key results of this paper include realistic testing mechanism and fault models, an efficient and scalable distributed diagnosis algorithm using clustering, a global diagnosis strategy of all the nodes. The proposed approach has been evaluated analytically as well as through simulation. The diagnosis latency and message complexity of the algorithm was found to be O(ΔTx + lcTf + max(Tout1, Tout2)) and O(ncCs) respectively. The result shows that the diagnosis performance is better using the proposed clustering approach than non-clustering approaches. [PUBLICATION ABSTRACT]</abstract><cop>Calgary</cop><pub>Taylor & Francis Ltd</pub><doi>10.2316/Journal.202.2009.4.202-2513</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1925-7074 |
ispartof | International journal of computers & applications, 2009-10, Vol.31 (4), p.1 |
issn | 1925-7074 1206-212X 1925-7074 |
language | eng |
recordid | cdi_proquest_journals_734727110 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algorithms Fault diagnosis Network topologies Scalability Simulation Wireless networks |
title | A NOVEL HIERARCHICAL CLUSTERING APPROACH FOR DIAGNOSING LARGE– SCALE WIRELESS ADHOC SYSTEMS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NOVEL%20HIERARCHICAL%20CLUSTERING%20APPROACH%20FOR%20DIAGNOSING%20LARGE%E2%80%93%20SCALE%20WIRELESS%20ADHOC%20SYSTEMS&rft.jtitle=International%20journal%20of%20computers%20&%20applications&rft.au=Khilar,%20P.M.&rft.date=2009-10-01&rft.volume=31&rft.issue=4&rft.spage=1&rft.pages=1-&rft.issn=1925-7074&rft.eissn=1925-7074&rft_id=info:doi/10.2316/Journal.202.2009.4.202-2513&rft_dat=%3Cproquest_cross%3E2099167481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c790-6867ae28e206a6c05b578de7bd768d91e5f59699137eccf398b92577819d30203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734727110&rft_id=info:pmid/&rfr_iscdi=true |