Loading…

Iron and zinc grain density in common wheat grown in Central Asia

Sixty-six spring and winter common wheat genotypes from Central Asian breeding programs were evaluated for grain concentrations of iron (Fe) and zinc (Zn). Iron showed large variation among genotypes, ranging from 25 mg kg^sup -1^ to 56 mg kg^sup -1^ (mean 38 mg kg^sup -1^). Similarly, Zn concentrat...

Full description

Saved in:
Bibliographic Details
Published in:Euphytica 2007-05, Vol.155 (1-2), p.193-203
Main Authors: MORGOUNOV, Alexei, FERNEY GOMEZ-BECERRA, Hugo, ABUGALIEVA, Aigul, DZHUNUSOVA, Mira, YESSIMBEKOVA, M, MUMINJANOV, Hafiz, ZELENSKIY, Yu, OZTURK, Levent, CAKMAK, Ismail
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sixty-six spring and winter common wheat genotypes from Central Asian breeding programs were evaluated for grain concentrations of iron (Fe) and zinc (Zn). Iron showed large variation among genotypes, ranging from 25 mg kg^sup -1^ to 56 mg kg^sup -1^ (mean 38 mg kg^sup -1^). Similarly, Zn concentration varied among genotypes, ranging between 20 mg kg^sup -1^ and 39 mg kg^sup -1^ (mean 28 mg kg^sup -1^). Spring wheat cultivars possessed higher Fe-grain concentrations than winter wheats. By contrast, winter wheats showed higher Zn-grain concentrations than spring genotypes. Within spring wheat, a strongly significant positive correlation was found between Fe and Zn. Grain protein content was also significantly (P < 0.001) correlated with grain Zn and Fe content. There were strong significantly negative correlations between Fe and plant height, and Fe and glutenin content. Similar correlation coefficients were found for Zn. In winter wheat, significant positive correlations were found between Fe and Zn, and between Zn and sulfur (S). Manganese (Mn) and phosphorus (P) were negatively correlated with both Fe and Zn. The additive main effects and multiplicative interactions (AMMI) analysis of genotype Ă— environment interactions for grain Fe and Zn concentrations showed that genotype effects largely controlled Fe concentration, whereas Zn concentration was almost totally dependent on location effects. Spring wheat genotypes Lutescens 574, and Eritrospermum 78; and winter wheat genotypes Navruz, NA160/HEINEVII/BUC/3/F59.71//GHK, Tacika, DUCULA//VEE/MYNA, and JUP/4/CLLF/3/II14.53/ODIN//CI13431/WA00477, are promising materials for increasing Fe and Zn concentrations in the grain, as well as enhancing the concentration of promoters of Zn bioavailability, such as S-containing amino acids.[PUBLICATION ABSTRACT]
ISSN:0014-2336
1573-5060
DOI:10.1007/s10681-006-9321-2