Loading…

Agricultural management explains historic changes in regional soil carbon stocks

Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resultin...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-08, Vol.107 (33), p.14926-14930
Main Authors: van Wesemael, Bas, Paustian, Keith, Meersmans, Jeroen, Goidts, Esther, Barancikova, Gabriela, Easter, Mark, Schlesinger, William H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143
cites cdi_FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143
container_end_page 14930
container_issue 33
container_start_page 14926
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator van Wesemael, Bas
Paustian, Keith
Meersmans, Jeroen
Goidts, Esther
Barancikova, Gabriela
Easter, Mark
Schlesinger, William H.
description Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.
doi_str_mv 10.1073/pnas.1002592107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_746435073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25709010</jstor_id><sourcerecordid>25709010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAkUcekpdPwRx74gVRUFpEpwgPPIcZysl6y92EkF_z3e7tIFTh6Nf--Nx4-QlxTeUmj55S6YXCpgjWal8YisKGhaS6HhMVmVflsrwcQZeZbzBgB0o-ApOWMgW021WJEvV2PydpnmJZmp2ppgRrd1Ya7cz91kfMjV2uc5FqayaxNGlysfquRGH0MR5OinyprUxVAVzH7Pz8mTwUzZvTie5-Tbzfuv1x_r288fPl1f3dZWgpprZjgfWKctl_0g2GC5EYPtwWjmLLV9T5VxnLe8d27oO6WNtSCVBS5Ub6jg5-TdwXe3dFvX2_LmsgHukt-a9Auj8fjvTfBrHOMdMs1BSF4M-MFg8m50GFPn8Y7dC-_rZRrRWOwcMiYVMimUpkV1cRyb4o_F5Rm3Pls3TSa4uGRUtJXQKM4K-eY_chOXVD4tYyuk4E3Jr0CXB8immHNyw8MCFHCfMO4TxlPCRfH6770f-D-RFqA6Anvlya5FzpEKzWRBXh2QzT7ak0XTggYK_Df_UbhL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746435073</pqid></control><display><type>article</type><title>Agricultural management explains historic changes in regional soil carbon stocks</title><source>PubMed Central (Open Access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>van Wesemael, Bas ; Paustian, Keith ; Meersmans, Jeroen ; Goidts, Esther ; Barancikova, Gabriela ; Easter, Mark ; Schlesinger, William H.</creator><creatorcontrib>van Wesemael, Bas ; Paustian, Keith ; Meersmans, Jeroen ; Goidts, Esther ; Barancikova, Gabriela ; Easter, Mark ; Schlesinger, William H.</creatorcontrib><description>Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1002592107</identifier><identifier>PMID: 20679194</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>agricultural land ; Agricultural management ; Agricultural soils ; Agriculture ; Agriculture - methods ; Agriculture - trends ; Agrology ; Algorithms ; Animals ; Belgium ; Biological Sciences ; Carbon ; Carbon - metabolism ; Carbon sequestration ; Clay ; Crops, Agricultural ; Crops, Agricultural - classification ; Crops, Agricultural - growth &amp; development ; Crops, Agricultural - metabolism ; Ecosystem ; Environmental Monitoring ; Environmental Monitoring - methods ; Environmental Monitoring - statistics &amp; numerical data ; Environmental sciences &amp; ecology ; Farmlands ; flood plains ; Fresh Water ; Fresh Water - analysis ; Geography ; Grasses ; Grassland soils ; Grasslands ; Land use ; Land use history ; Life sciences ; Manure ; Manure - analysis ; Models, Theoretical ; Organic chemicals ; Organic soils ; Poaceae ; Poaceae - classification ; Poaceae - growth &amp; development ; Poaceae - metabolism ; Regional inventories ; Sciences de l’environnement &amp; écologie ; Sciences du vivant ; Soil ; Soil - analysis ; Soil organic carbon ; Soil organic carbon dynamics modeling ; Soils ; spatial distribution ; Time Factors ; Water Movements</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (33), p.14926-14930</ispartof><rights>Copyright National Academy of Sciences Aug 17, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143</citedby><cites>FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25709010$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25709010$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20679194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Wesemael, Bas</creatorcontrib><creatorcontrib>Paustian, Keith</creatorcontrib><creatorcontrib>Meersmans, Jeroen</creatorcontrib><creatorcontrib>Goidts, Esther</creatorcontrib><creatorcontrib>Barancikova, Gabriela</creatorcontrib><creatorcontrib>Easter, Mark</creatorcontrib><creatorcontrib>Schlesinger, William H.</creatorcontrib><title>Agricultural management explains historic changes in regional soil carbon stocks</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.</description><subject>agricultural land</subject><subject>Agricultural management</subject><subject>Agricultural soils</subject><subject>Agriculture</subject><subject>Agriculture - methods</subject><subject>Agriculture - trends</subject><subject>Agrology</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Belgium</subject><subject>Biological Sciences</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon sequestration</subject><subject>Clay</subject><subject>Crops, Agricultural</subject><subject>Crops, Agricultural - classification</subject><subject>Crops, Agricultural - growth &amp; development</subject><subject>Crops, Agricultural - metabolism</subject><subject>Ecosystem</subject><subject>Environmental Monitoring</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Monitoring - statistics &amp; numerical data</subject><subject>Environmental sciences &amp; ecology</subject><subject>Farmlands</subject><subject>flood plains</subject><subject>Fresh Water</subject><subject>Fresh Water - analysis</subject><subject>Geography</subject><subject>Grasses</subject><subject>Grassland soils</subject><subject>Grasslands</subject><subject>Land use</subject><subject>Land use history</subject><subject>Life sciences</subject><subject>Manure</subject><subject>Manure - analysis</subject><subject>Models, Theoretical</subject><subject>Organic chemicals</subject><subject>Organic soils</subject><subject>Poaceae</subject><subject>Poaceae - classification</subject><subject>Poaceae - growth &amp; development</subject><subject>Poaceae - metabolism</subject><subject>Regional inventories</subject><subject>Sciences de l’environnement &amp; écologie</subject><subject>Sciences du vivant</subject><subject>Soil</subject><subject>Soil - analysis</subject><subject>Soil organic carbon</subject><subject>Soil organic carbon dynamics modeling</subject><subject>Soils</subject><subject>spatial distribution</subject><subject>Time Factors</subject><subject>Water Movements</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzAkUcekpdPwRx74gVRUFpEpwgPPIcZysl6y92EkF_z3e7tIFTh6Nf--Nx4-QlxTeUmj55S6YXCpgjWal8YisKGhaS6HhMVmVflsrwcQZeZbzBgB0o-ApOWMgW021WJEvV2PydpnmJZmp2ppgRrd1Ya7cz91kfMjV2uc5FqayaxNGlysfquRGH0MR5OinyprUxVAVzH7Pz8mTwUzZvTie5-Tbzfuv1x_r288fPl1f3dZWgpprZjgfWKctl_0g2GC5EYPtwWjmLLV9T5VxnLe8d27oO6WNtSCVBS5Ub6jg5-TdwXe3dFvX2_LmsgHukt-a9Auj8fjvTfBrHOMdMs1BSF4M-MFg8m50GFPn8Y7dC-_rZRrRWOwcMiYVMimUpkV1cRyb4o_F5Rm3Pls3TSa4uGRUtJXQKM4K-eY_chOXVD4tYyuk4E3Jr0CXB8immHNyw8MCFHCfMO4TxlPCRfH6770f-D-RFqA6Anvlya5FzpEKzWRBXh2QzT7ak0XTggYK_Df_UbhL</recordid><startdate>20100817</startdate><enddate>20100817</enddate><creator>van Wesemael, Bas</creator><creator>Paustian, Keith</creator><creator>Meersmans, Jeroen</creator><creator>Goidts, Esther</creator><creator>Barancikova, Gabriela</creator><creator>Easter, Mark</creator><creator>Schlesinger, William H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>Q33</scope><scope>5PM</scope></search><sort><creationdate>20100817</creationdate><title>Agricultural management explains historic changes in regional soil carbon stocks</title><author>van Wesemael, Bas ; Paustian, Keith ; Meersmans, Jeroen ; Goidts, Esther ; Barancikova, Gabriela ; Easter, Mark ; Schlesinger, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>agricultural land</topic><topic>Agricultural management</topic><topic>Agricultural soils</topic><topic>Agriculture</topic><topic>Agriculture - methods</topic><topic>Agriculture - trends</topic><topic>Agrology</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Belgium</topic><topic>Biological Sciences</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon sequestration</topic><topic>Clay</topic><topic>Crops, Agricultural</topic><topic>Crops, Agricultural - classification</topic><topic>Crops, Agricultural - growth &amp; development</topic><topic>Crops, Agricultural - metabolism</topic><topic>Ecosystem</topic><topic>Environmental Monitoring</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Monitoring - statistics &amp; numerical data</topic><topic>Environmental sciences &amp; ecology</topic><topic>Farmlands</topic><topic>flood plains</topic><topic>Fresh Water</topic><topic>Fresh Water - analysis</topic><topic>Geography</topic><topic>Grasses</topic><topic>Grassland soils</topic><topic>Grasslands</topic><topic>Land use</topic><topic>Land use history</topic><topic>Life sciences</topic><topic>Manure</topic><topic>Manure - analysis</topic><topic>Models, Theoretical</topic><topic>Organic chemicals</topic><topic>Organic soils</topic><topic>Poaceae</topic><topic>Poaceae - classification</topic><topic>Poaceae - growth &amp; development</topic><topic>Poaceae - metabolism</topic><topic>Regional inventories</topic><topic>Sciences de l’environnement &amp; écologie</topic><topic>Sciences du vivant</topic><topic>Soil</topic><topic>Soil - analysis</topic><topic>Soil organic carbon</topic><topic>Soil organic carbon dynamics modeling</topic><topic>Soils</topic><topic>spatial distribution</topic><topic>Time Factors</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Wesemael, Bas</creatorcontrib><creatorcontrib>Paustian, Keith</creatorcontrib><creatorcontrib>Meersmans, Jeroen</creatorcontrib><creatorcontrib>Goidts, Esther</creatorcontrib><creatorcontrib>Barancikova, Gabriela</creatorcontrib><creatorcontrib>Easter, Mark</creatorcontrib><creatorcontrib>Schlesinger, William H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Wesemael, Bas</au><au>Paustian, Keith</au><au>Meersmans, Jeroen</au><au>Goidts, Esther</au><au>Barancikova, Gabriela</au><au>Easter, Mark</au><au>Schlesinger, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agricultural management explains historic changes in regional soil carbon stocks</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-08-17</date><risdate>2010</risdate><volume>107</volume><issue>33</issue><spage>14926</spage><epage>14930</epage><pages>14926-14930</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20679194</pmid><doi>10.1073/pnas.1002592107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (33), p.14926-14930
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_proquest_journals_746435073
source PubMed Central (Open Access); JSTOR Archival Journals and Primary Sources Collection
subjects agricultural land
Agricultural management
Agricultural soils
Agriculture
Agriculture - methods
Agriculture - trends
Agrology
Algorithms
Animals
Belgium
Biological Sciences
Carbon
Carbon - metabolism
Carbon sequestration
Clay
Crops, Agricultural
Crops, Agricultural - classification
Crops, Agricultural - growth & development
Crops, Agricultural - metabolism
Ecosystem
Environmental Monitoring
Environmental Monitoring - methods
Environmental Monitoring - statistics & numerical data
Environmental sciences & ecology
Farmlands
flood plains
Fresh Water
Fresh Water - analysis
Geography
Grasses
Grassland soils
Grasslands
Land use
Land use history
Life sciences
Manure
Manure - analysis
Models, Theoretical
Organic chemicals
Organic soils
Poaceae
Poaceae - classification
Poaceae - growth & development
Poaceae - metabolism
Regional inventories
Sciences de l’environnement & écologie
Sciences du vivant
Soil
Soil - analysis
Soil organic carbon
Soil organic carbon dynamics modeling
Soils
spatial distribution
Time Factors
Water Movements
title Agricultural management explains historic changes in regional soil carbon stocks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agricultural%20management%20explains%20historic%20changes%20in%20regional%20soil%20carbon%20stocks&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=van%20Wesemael,%20Bas&rft.date=2010-08-17&rft.volume=107&rft.issue=33&rft.spage=14926&rft.epage=14930&rft.pages=14926-14930&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1002592107&rft_dat=%3Cjstor_proqu%3E25709010%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746435073&rft_id=info:pmid/20679194&rft_jstor_id=25709010&rfr_iscdi=true