Loading…
Agricultural management explains historic changes in regional soil carbon stocks
Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resultin...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-08, Vol.107 (33), p.14926-14930 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143 |
---|---|
cites | cdi_FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143 |
container_end_page | 14930 |
container_issue | 33 |
container_start_page | 14926 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | van Wesemael, Bas Paustian, Keith Meersmans, Jeroen Goidts, Esther Barancikova, Gabriela Easter, Mark Schlesinger, William H. |
description | Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. |
doi_str_mv | 10.1073/pnas.1002592107 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_746435073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25709010</jstor_id><sourcerecordid>25709010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAkUcekpdPwRx74gVRUFpEpwgPPIcZysl6y92EkF_z3e7tIFTh6Nf--Nx4-QlxTeUmj55S6YXCpgjWal8YisKGhaS6HhMVmVflsrwcQZeZbzBgB0o-ApOWMgW021WJEvV2PydpnmJZmp2ppgRrd1Ya7cz91kfMjV2uc5FqayaxNGlysfquRGH0MR5OinyprUxVAVzH7Pz8mTwUzZvTie5-Tbzfuv1x_r288fPl1f3dZWgpprZjgfWKctl_0g2GC5EYPtwWjmLLV9T5VxnLe8d27oO6WNtSCVBS5Ub6jg5-TdwXe3dFvX2_LmsgHukt-a9Auj8fjvTfBrHOMdMs1BSF4M-MFg8m50GFPn8Y7dC-_rZRrRWOwcMiYVMimUpkV1cRyb4o_F5Rm3Pls3TSa4uGRUtJXQKM4K-eY_chOXVD4tYyuk4E3Jr0CXB8immHNyw8MCFHCfMO4TxlPCRfH6770f-D-RFqA6Anvlya5FzpEKzWRBXh2QzT7ak0XTggYK_Df_UbhL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746435073</pqid></control><display><type>article</type><title>Agricultural management explains historic changes in regional soil carbon stocks</title><source>PubMed Central (Open Access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>van Wesemael, Bas ; Paustian, Keith ; Meersmans, Jeroen ; Goidts, Esther ; Barancikova, Gabriela ; Easter, Mark ; Schlesinger, William H.</creator><creatorcontrib>van Wesemael, Bas ; Paustian, Keith ; Meersmans, Jeroen ; Goidts, Esther ; Barancikova, Gabriela ; Easter, Mark ; Schlesinger, William H.</creatorcontrib><description>Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1002592107</identifier><identifier>PMID: 20679194</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>agricultural land ; Agricultural management ; Agricultural soils ; Agriculture ; Agriculture - methods ; Agriculture - trends ; Agrology ; Algorithms ; Animals ; Belgium ; Biological Sciences ; Carbon ; Carbon - metabolism ; Carbon sequestration ; Clay ; Crops, Agricultural ; Crops, Agricultural - classification ; Crops, Agricultural - growth & development ; Crops, Agricultural - metabolism ; Ecosystem ; Environmental Monitoring ; Environmental Monitoring - methods ; Environmental Monitoring - statistics & numerical data ; Environmental sciences & ecology ; Farmlands ; flood plains ; Fresh Water ; Fresh Water - analysis ; Geography ; Grasses ; Grassland soils ; Grasslands ; Land use ; Land use history ; Life sciences ; Manure ; Manure - analysis ; Models, Theoretical ; Organic chemicals ; Organic soils ; Poaceae ; Poaceae - classification ; Poaceae - growth & development ; Poaceae - metabolism ; Regional inventories ; Sciences de l’environnement & écologie ; Sciences du vivant ; Soil ; Soil - analysis ; Soil organic carbon ; Soil organic carbon dynamics modeling ; Soils ; spatial distribution ; Time Factors ; Water Movements</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (33), p.14926-14930</ispartof><rights>Copyright National Academy of Sciences Aug 17, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143</citedby><cites>FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25709010$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25709010$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20679194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Wesemael, Bas</creatorcontrib><creatorcontrib>Paustian, Keith</creatorcontrib><creatorcontrib>Meersmans, Jeroen</creatorcontrib><creatorcontrib>Goidts, Esther</creatorcontrib><creatorcontrib>Barancikova, Gabriela</creatorcontrib><creatorcontrib>Easter, Mark</creatorcontrib><creatorcontrib>Schlesinger, William H.</creatorcontrib><title>Agricultural management explains historic changes in regional soil carbon stocks</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.</description><subject>agricultural land</subject><subject>Agricultural management</subject><subject>Agricultural soils</subject><subject>Agriculture</subject><subject>Agriculture - methods</subject><subject>Agriculture - trends</subject><subject>Agrology</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Belgium</subject><subject>Biological Sciences</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon sequestration</subject><subject>Clay</subject><subject>Crops, Agricultural</subject><subject>Crops, Agricultural - classification</subject><subject>Crops, Agricultural - growth & development</subject><subject>Crops, Agricultural - metabolism</subject><subject>Ecosystem</subject><subject>Environmental Monitoring</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Monitoring - statistics & numerical data</subject><subject>Environmental sciences & ecology</subject><subject>Farmlands</subject><subject>flood plains</subject><subject>Fresh Water</subject><subject>Fresh Water - analysis</subject><subject>Geography</subject><subject>Grasses</subject><subject>Grassland soils</subject><subject>Grasslands</subject><subject>Land use</subject><subject>Land use history</subject><subject>Life sciences</subject><subject>Manure</subject><subject>Manure - analysis</subject><subject>Models, Theoretical</subject><subject>Organic chemicals</subject><subject>Organic soils</subject><subject>Poaceae</subject><subject>Poaceae - classification</subject><subject>Poaceae - growth & development</subject><subject>Poaceae - metabolism</subject><subject>Regional inventories</subject><subject>Sciences de l’environnement & écologie</subject><subject>Sciences du vivant</subject><subject>Soil</subject><subject>Soil - analysis</subject><subject>Soil organic carbon</subject><subject>Soil organic carbon dynamics modeling</subject><subject>Soils</subject><subject>spatial distribution</subject><subject>Time Factors</subject><subject>Water Movements</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzAkUcekpdPwRx74gVRUFpEpwgPPIcZysl6y92EkF_z3e7tIFTh6Nf--Nx4-QlxTeUmj55S6YXCpgjWal8YisKGhaS6HhMVmVflsrwcQZeZbzBgB0o-ApOWMgW021WJEvV2PydpnmJZmp2ppgRrd1Ya7cz91kfMjV2uc5FqayaxNGlysfquRGH0MR5OinyprUxVAVzH7Pz8mTwUzZvTie5-Tbzfuv1x_r288fPl1f3dZWgpprZjgfWKctl_0g2GC5EYPtwWjmLLV9T5VxnLe8d27oO6WNtSCVBS5Ub6jg5-TdwXe3dFvX2_LmsgHukt-a9Auj8fjvTfBrHOMdMs1BSF4M-MFg8m50GFPn8Y7dC-_rZRrRWOwcMiYVMimUpkV1cRyb4o_F5Rm3Pls3TSa4uGRUtJXQKM4K-eY_chOXVD4tYyuk4E3Jr0CXB8immHNyw8MCFHCfMO4TxlPCRfH6770f-D-RFqA6Anvlya5FzpEKzWRBXh2QzT7ak0XTggYK_Df_UbhL</recordid><startdate>20100817</startdate><enddate>20100817</enddate><creator>van Wesemael, Bas</creator><creator>Paustian, Keith</creator><creator>Meersmans, Jeroen</creator><creator>Goidts, Esther</creator><creator>Barancikova, Gabriela</creator><creator>Easter, Mark</creator><creator>Schlesinger, William H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>Q33</scope><scope>5PM</scope></search><sort><creationdate>20100817</creationdate><title>Agricultural management explains historic changes in regional soil carbon stocks</title><author>van Wesemael, Bas ; Paustian, Keith ; Meersmans, Jeroen ; Goidts, Esther ; Barancikova, Gabriela ; Easter, Mark ; Schlesinger, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>agricultural land</topic><topic>Agricultural management</topic><topic>Agricultural soils</topic><topic>Agriculture</topic><topic>Agriculture - methods</topic><topic>Agriculture - trends</topic><topic>Agrology</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Belgium</topic><topic>Biological Sciences</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon sequestration</topic><topic>Clay</topic><topic>Crops, Agricultural</topic><topic>Crops, Agricultural - classification</topic><topic>Crops, Agricultural - growth & development</topic><topic>Crops, Agricultural - metabolism</topic><topic>Ecosystem</topic><topic>Environmental Monitoring</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Monitoring - statistics & numerical data</topic><topic>Environmental sciences & ecology</topic><topic>Farmlands</topic><topic>flood plains</topic><topic>Fresh Water</topic><topic>Fresh Water - analysis</topic><topic>Geography</topic><topic>Grasses</topic><topic>Grassland soils</topic><topic>Grasslands</topic><topic>Land use</topic><topic>Land use history</topic><topic>Life sciences</topic><topic>Manure</topic><topic>Manure - analysis</topic><topic>Models, Theoretical</topic><topic>Organic chemicals</topic><topic>Organic soils</topic><topic>Poaceae</topic><topic>Poaceae - classification</topic><topic>Poaceae - growth & development</topic><topic>Poaceae - metabolism</topic><topic>Regional inventories</topic><topic>Sciences de l’environnement & écologie</topic><topic>Sciences du vivant</topic><topic>Soil</topic><topic>Soil - analysis</topic><topic>Soil organic carbon</topic><topic>Soil organic carbon dynamics modeling</topic><topic>Soils</topic><topic>spatial distribution</topic><topic>Time Factors</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Wesemael, Bas</creatorcontrib><creatorcontrib>Paustian, Keith</creatorcontrib><creatorcontrib>Meersmans, Jeroen</creatorcontrib><creatorcontrib>Goidts, Esther</creatorcontrib><creatorcontrib>Barancikova, Gabriela</creatorcontrib><creatorcontrib>Easter, Mark</creatorcontrib><creatorcontrib>Schlesinger, William H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Wesemael, Bas</au><au>Paustian, Keith</au><au>Meersmans, Jeroen</au><au>Goidts, Esther</au><au>Barancikova, Gabriela</au><au>Easter, Mark</au><au>Schlesinger, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agricultural management explains historic changes in regional soil carbon stocks</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-08-17</date><risdate>2010</risdate><volume>107</volume><issue>33</issue><spage>14926</spage><epage>14930</epage><pages>14926-14930</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20679194</pmid><doi>10.1073/pnas.1002592107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (33), p.14926-14930 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_746435073 |
source | PubMed Central (Open Access); JSTOR Archival Journals and Primary Sources Collection |
subjects | agricultural land Agricultural management Agricultural soils Agriculture Agriculture - methods Agriculture - trends Agrology Algorithms Animals Belgium Biological Sciences Carbon Carbon - metabolism Carbon sequestration Clay Crops, Agricultural Crops, Agricultural - classification Crops, Agricultural - growth & development Crops, Agricultural - metabolism Ecosystem Environmental Monitoring Environmental Monitoring - methods Environmental Monitoring - statistics & numerical data Environmental sciences & ecology Farmlands flood plains Fresh Water Fresh Water - analysis Geography Grasses Grassland soils Grasslands Land use Land use history Life sciences Manure Manure - analysis Models, Theoretical Organic chemicals Organic soils Poaceae Poaceae - classification Poaceae - growth & development Poaceae - metabolism Regional inventories Sciences de l’environnement & écologie Sciences du vivant Soil Soil - analysis Soil organic carbon Soil organic carbon dynamics modeling Soils spatial distribution Time Factors Water Movements |
title | Agricultural management explains historic changes in regional soil carbon stocks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agricultural%20management%20explains%20historic%20changes%20in%20regional%20soil%20carbon%20stocks&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=van%20Wesemael,%20Bas&rft.date=2010-08-17&rft.volume=107&rft.issue=33&rft.spage=14926&rft.epage=14930&rft.pages=14926-14930&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1002592107&rft_dat=%3Cjstor_proqu%3E25709010%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c608t-2a33f2b9c36df42fc3a4fcd0a92ec1cdd18ae3373deefdb89acc068c0348da143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746435073&rft_id=info:pmid/20679194&rft_jstor_id=25709010&rfr_iscdi=true |