Loading…

NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS

We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat a...

Full description

Saved in:
Bibliographic Details
Published in:American journal of mathematics 2010-08, Vol.132 (4), p.1113-1152
Main Authors: Hitzelberger, Petra, Kramer, Linus, Weiss, Richard M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-b8d6356d767f36efba306a72fc074058b55054376c038193842e75b3a21c84793
cites
container_end_page 1152
container_issue 4
container_start_page 1113
container_title American journal of mathematics
container_volume 132
creator Hitzelberger, Petra
Kramer, Linus
Weiss, Richard M.
description We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat and Tits. We give the complete classification of Bruhat-Tits spaces whose building at infinity is the fixed point set of a polarity of an ambient building of type B₂, F₄ or G₂ associated with a Ree or Suzuki group endowed with the usual root datum. (In the B₂ and G₂ cases, this fixed point set is a building of rank one; in the F₄ case, it is a generalized octagon whose Weyl group is not crystallographic.) We also show that each of these Bruhat-Tits spaces has a natural embedding in the unique Bruhat-Tits space whose building at infinity is the corresponding ambient building.
doi_str_mv 10.1353/ajm.0.0133
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_746767937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40864472</jstor_id><sourcerecordid>40864472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b8d6356d767f36efba306a72fc074058b55054376c038193842e75b3a21c84793</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRsFY37oUguBFSb-bOKxuhpmkbDIk0zcbNME0TaOjLTLvw35vQUleXC-d8Bz5CHj0YeMjxzdSbAQzAQ7wiPQ8UuAKlvCY9AKCuj1Tekjtr6_YFCbRH3pM0cUdRFszCeeiEeRBHo3CYOB95FI-iZJI543TmzKehMwtDZ5iMnCz_zj8jZzJL86_sntxUZm3Lh_Ptk3wczoOpG6eTKBjGboGcH9yFWgrkYimFrFCU1cIgCCNpVYBkwNWCc-AMpSgAleejYrSUfIGGeoVi0sc-eT5x983u51jag653x2bbTmrJRIv1Ubah11OoaHbWNmWl981qY5pf7YHu9OhWjwbd6WnDL2eisYVZV43ZFit7aVAEJaVQbY5dluuyOGyOtvwfR-VT9HXWqe5Me8Bas6qrPZ1qtT3smguWgRKMSYp_jkp1_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746767937</pqid></control><display><type>article</type><title>NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection</source><creator>Hitzelberger, Petra ; Kramer, Linus ; Weiss, Richard M.</creator><creatorcontrib>Hitzelberger, Petra ; Kramer, Linus ; Weiss, Richard M.</creatorcontrib><description>We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat and Tits. We give the complete classification of Bruhat-Tits spaces whose building at infinity is the fixed point set of a polarity of an ambient building of type B₂, F₄ or G₂ associated with a Ree or Suzuki group endowed with the usual root datum. (In the B₂ and G₂ cases, this fixed point set is a building of rank one; in the F₄ case, it is a generalized octagon whose Weyl group is not crystallographic.) We also show that each of these Bruhat-Tits spaces has a natural embedding in the unique Bruhat-Tits space whose building at infinity is the corresponding ambient building.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.0.0133</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Automorphisms ; Differential geometry ; Educational buildings ; Equipollence ; Euclidean geometry ; Euclidean space ; Exact sciences and technology ; General mathematics ; General, history and biography ; Geometry ; Infinity ; Mathematical analysis ; Mathematical functions ; Mathematical problems ; Mathematics ; Multivariate analysis ; Probability and statistics ; Real numbers ; Residential buildings ; Sciences and techniques of general use ; Statistics ; Vertices</subject><ispartof>American journal of mathematics, 2010-08, Vol.132 (4), p.1113-1152</ispartof><rights>Copyright © 2010 The Johns Hopkins University Press</rights><rights>Copyright © 2010 The Johns Hopkins University Press.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b8d6356d767f36efba306a72fc074058b55054376c038193842e75b3a21c84793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40864472$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40864472$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23087768$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hitzelberger, Petra</creatorcontrib><creatorcontrib>Kramer, Linus</creatorcontrib><creatorcontrib>Weiss, Richard M.</creatorcontrib><title>NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS</title><title>American journal of mathematics</title><description>We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat and Tits. We give the complete classification of Bruhat-Tits spaces whose building at infinity is the fixed point set of a polarity of an ambient building of type B₂, F₄ or G₂ associated with a Ree or Suzuki group endowed with the usual root datum. (In the B₂ and G₂ cases, this fixed point set is a building of rank one; in the F₄ case, it is a generalized octagon whose Weyl group is not crystallographic.) We also show that each of these Bruhat-Tits spaces has a natural embedding in the unique Bruhat-Tits space whose building at infinity is the corresponding ambient building.</description><subject>Automorphisms</subject><subject>Differential geometry</subject><subject>Educational buildings</subject><subject>Equipollence</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Geometry</subject><subject>Infinity</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>Real numbers</subject><subject>Residential buildings</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Vertices</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AUhQdRsFY37oUguBFSb-bOKxuhpmkbDIk0zcbNME0TaOjLTLvw35vQUleXC-d8Bz5CHj0YeMjxzdSbAQzAQ7wiPQ8UuAKlvCY9AKCuj1Tekjtr6_YFCbRH3pM0cUdRFszCeeiEeRBHo3CYOB95FI-iZJI543TmzKehMwtDZ5iMnCz_zj8jZzJL86_sntxUZm3Lh_Ptk3wczoOpG6eTKBjGboGcH9yFWgrkYimFrFCU1cIgCCNpVYBkwNWCc-AMpSgAleejYrSUfIGGeoVi0sc-eT5x983u51jag653x2bbTmrJRIv1Ubah11OoaHbWNmWl981qY5pf7YHu9OhWjwbd6WnDL2eisYVZV43ZFit7aVAEJaVQbY5dluuyOGyOtvwfR-VT9HXWqe5Me8Bas6qrPZ1qtT3smguWgRKMSYp_jkp1_g</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Hitzelberger, Petra</creator><creator>Kramer, Linus</creator><creator>Weiss, Richard M.</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100801</creationdate><title>NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS</title><author>Hitzelberger, Petra ; Kramer, Linus ; Weiss, Richard M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b8d6356d767f36efba306a72fc074058b55054376c038193842e75b3a21c84793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automorphisms</topic><topic>Differential geometry</topic><topic>Educational buildings</topic><topic>Equipollence</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Geometry</topic><topic>Infinity</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>Real numbers</topic><topic>Residential buildings</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hitzelberger, Petra</creatorcontrib><creatorcontrib>Kramer, Linus</creatorcontrib><creatorcontrib>Weiss, Richard M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hitzelberger, Petra</au><au>Kramer, Linus</au><au>Weiss, Richard M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS</atitle><jtitle>American journal of mathematics</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>132</volume><issue>4</issue><spage>1113</spage><epage>1152</epage><pages>1113-1152</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat and Tits. We give the complete classification of Bruhat-Tits spaces whose building at infinity is the fixed point set of a polarity of an ambient building of type B₂, F₄ or G₂ associated with a Ree or Suzuki group endowed with the usual root datum. (In the B₂ and G₂ cases, this fixed point set is a building of rank one; in the F₄ case, it is a generalized octagon whose Weyl group is not crystallographic.) We also show that each of these Bruhat-Tits spaces has a natural embedding in the unique Bruhat-Tits space whose building at infinity is the corresponding ambient building.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.0.0133</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2010-08, Vol.132 (4), p.1113-1152
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_746767937
source JSTOR Archival Journals and Primary Sources Collection; Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection
subjects Automorphisms
Differential geometry
Educational buildings
Equipollence
Euclidean geometry
Euclidean space
Exact sciences and technology
General mathematics
General, history and biography
Geometry
Infinity
Mathematical analysis
Mathematical functions
Mathematical problems
Mathematics
Multivariate analysis
Probability and statistics
Real numbers
Residential buildings
Sciences and techniques of general use
Statistics
Vertices
title NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NON-DISCRETE%20EUCLIDEAN%20BUILDINGS%20FOR%20THE%20REE%20AND%20SUZUKI%20GROUPS&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Hitzelberger,%20Petra&rft.date=2010-08-01&rft.volume=132&rft.issue=4&rft.spage=1113&rft.epage=1152&rft.pages=1113-1152&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.0.0133&rft_dat=%3Cjstor_proqu%3E40864472%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-b8d6356d767f36efba306a72fc074058b55054376c038193842e75b3a21c84793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746767937&rft_id=info:pmid/&rft_jstor_id=40864472&rfr_iscdi=true