Loading…
NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS
We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat a...
Saved in:
Published in: | American journal of mathematics 2010-08, Vol.132 (4), p.1113-1152 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-b8d6356d767f36efba306a72fc074058b55054376c038193842e75b3a21c84793 |
---|---|
cites | |
container_end_page | 1152 |
container_issue | 4 |
container_start_page | 1113 |
container_title | American journal of mathematics |
container_volume | 132 |
creator | Hitzelberger, Petra Kramer, Linus Weiss, Richard M. |
description | We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat and Tits. We give the complete classification of Bruhat-Tits spaces whose building at infinity is the fixed point set of a polarity of an ambient building of type B₂, F₄ or G₂ associated with a Ree or Suzuki group endowed with the usual root datum. (In the B₂ and G₂ cases, this fixed point set is a building of rank one; in the F₄ case, it is a generalized octagon whose Weyl group is not crystallographic.) We also show that each of these Bruhat-Tits spaces has a natural embedding in the unique Bruhat-Tits space whose building at infinity is the corresponding ambient building. |
doi_str_mv | 10.1353/ajm.0.0133 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_746767937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40864472</jstor_id><sourcerecordid>40864472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b8d6356d767f36efba306a72fc074058b55054376c038193842e75b3a21c84793</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRsFY37oUguBFSb-bOKxuhpmkbDIk0zcbNME0TaOjLTLvw35vQUleXC-d8Bz5CHj0YeMjxzdSbAQzAQ7wiPQ8UuAKlvCY9AKCuj1Tekjtr6_YFCbRH3pM0cUdRFszCeeiEeRBHo3CYOB95FI-iZJI543TmzKehMwtDZ5iMnCz_zj8jZzJL86_sntxUZm3Lh_Ptk3wczoOpG6eTKBjGboGcH9yFWgrkYimFrFCU1cIgCCNpVYBkwNWCc-AMpSgAleejYrSUfIGGeoVi0sc-eT5x983u51jag653x2bbTmrJRIv1Ubah11OoaHbWNmWl981qY5pf7YHu9OhWjwbd6WnDL2eisYVZV43ZFit7aVAEJaVQbY5dluuyOGyOtvwfR-VT9HXWqe5Me8Bas6qrPZ1qtT3smguWgRKMSYp_jkp1_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746767937</pqid></control><display><type>article</type><title>NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection</source><creator>Hitzelberger, Petra ; Kramer, Linus ; Weiss, Richard M.</creator><creatorcontrib>Hitzelberger, Petra ; Kramer, Linus ; Weiss, Richard M.</creatorcontrib><description>We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat and Tits. We give the complete classification of Bruhat-Tits spaces whose building at infinity is the fixed point set of a polarity of an ambient building of type B₂, F₄ or G₂ associated with a Ree or Suzuki group endowed with the usual root datum. (In the B₂ and G₂ cases, this fixed point set is a building of rank one; in the F₄ case, it is a generalized octagon whose Weyl group is not crystallographic.) We also show that each of these Bruhat-Tits spaces has a natural embedding in the unique Bruhat-Tits space whose building at infinity is the corresponding ambient building.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.0.0133</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Automorphisms ; Differential geometry ; Educational buildings ; Equipollence ; Euclidean geometry ; Euclidean space ; Exact sciences and technology ; General mathematics ; General, history and biography ; Geometry ; Infinity ; Mathematical analysis ; Mathematical functions ; Mathematical problems ; Mathematics ; Multivariate analysis ; Probability and statistics ; Real numbers ; Residential buildings ; Sciences and techniques of general use ; Statistics ; Vertices</subject><ispartof>American journal of mathematics, 2010-08, Vol.132 (4), p.1113-1152</ispartof><rights>Copyright © 2010 The Johns Hopkins University Press</rights><rights>Copyright © 2010 The Johns Hopkins University Press.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b8d6356d767f36efba306a72fc074058b55054376c038193842e75b3a21c84793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40864472$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40864472$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23087768$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hitzelberger, Petra</creatorcontrib><creatorcontrib>Kramer, Linus</creatorcontrib><creatorcontrib>Weiss, Richard M.</creatorcontrib><title>NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS</title><title>American journal of mathematics</title><description>We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat and Tits. We give the complete classification of Bruhat-Tits spaces whose building at infinity is the fixed point set of a polarity of an ambient building of type B₂, F₄ or G₂ associated with a Ree or Suzuki group endowed with the usual root datum. (In the B₂ and G₂ cases, this fixed point set is a building of rank one; in the F₄ case, it is a generalized octagon whose Weyl group is not crystallographic.) We also show that each of these Bruhat-Tits spaces has a natural embedding in the unique Bruhat-Tits space whose building at infinity is the corresponding ambient building.</description><subject>Automorphisms</subject><subject>Differential geometry</subject><subject>Educational buildings</subject><subject>Equipollence</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Geometry</subject><subject>Infinity</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>Real numbers</subject><subject>Residential buildings</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Vertices</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AUhQdRsFY37oUguBFSb-bOKxuhpmkbDIk0zcbNME0TaOjLTLvw35vQUleXC-d8Bz5CHj0YeMjxzdSbAQzAQ7wiPQ8UuAKlvCY9AKCuj1Tekjtr6_YFCbRH3pM0cUdRFszCeeiEeRBHo3CYOB95FI-iZJI543TmzKehMwtDZ5iMnCz_zj8jZzJL86_sntxUZm3Lh_Ptk3wczoOpG6eTKBjGboGcH9yFWgrkYimFrFCU1cIgCCNpVYBkwNWCc-AMpSgAleejYrSUfIGGeoVi0sc-eT5x983u51jag653x2bbTmrJRIv1Ubah11OoaHbWNmWl981qY5pf7YHu9OhWjwbd6WnDL2eisYVZV43ZFit7aVAEJaVQbY5dluuyOGyOtvwfR-VT9HXWqe5Me8Bas6qrPZ1qtT3smguWgRKMSYp_jkp1_g</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Hitzelberger, Petra</creator><creator>Kramer, Linus</creator><creator>Weiss, Richard M.</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100801</creationdate><title>NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS</title><author>Hitzelberger, Petra ; Kramer, Linus ; Weiss, Richard M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b8d6356d767f36efba306a72fc074058b55054376c038193842e75b3a21c84793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automorphisms</topic><topic>Differential geometry</topic><topic>Educational buildings</topic><topic>Equipollence</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Geometry</topic><topic>Infinity</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>Real numbers</topic><topic>Residential buildings</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hitzelberger, Petra</creatorcontrib><creatorcontrib>Kramer, Linus</creatorcontrib><creatorcontrib>Weiss, Richard M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hitzelberger, Petra</au><au>Kramer, Linus</au><au>Weiss, Richard M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS</atitle><jtitle>American journal of mathematics</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>132</volume><issue>4</issue><spage>1113</spage><epage>1152</epage><pages>1113-1152</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat and Tits. We give the complete classification of Bruhat-Tits spaces whose building at infinity is the fixed point set of a polarity of an ambient building of type B₂, F₄ or G₂ associated with a Ree or Suzuki group endowed with the usual root datum. (In the B₂ and G₂ cases, this fixed point set is a building of rank one; in the F₄ case, it is a generalized octagon whose Weyl group is not crystallographic.) We also show that each of these Bruhat-Tits spaces has a natural embedding in the unique Bruhat-Tits space whose building at infinity is the corresponding ambient building.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.0.0133</doi><tpages>40</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2010-08, Vol.132 (4), p.1113-1152 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_746767937 |
source | JSTOR Archival Journals and Primary Sources Collection; Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection |
subjects | Automorphisms Differential geometry Educational buildings Equipollence Euclidean geometry Euclidean space Exact sciences and technology General mathematics General, history and biography Geometry Infinity Mathematical analysis Mathematical functions Mathematical problems Mathematics Multivariate analysis Probability and statistics Real numbers Residential buildings Sciences and techniques of general use Statistics Vertices |
title | NON-DISCRETE EUCLIDEAN BUILDINGS FOR THE REE AND SUZUKI GROUPS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NON-DISCRETE%20EUCLIDEAN%20BUILDINGS%20FOR%20THE%20REE%20AND%20SUZUKI%20GROUPS&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Hitzelberger,%20Petra&rft.date=2010-08-01&rft.volume=132&rft.issue=4&rft.spage=1113&rft.epage=1152&rft.pages=1113-1152&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.0.0133&rft_dat=%3Cjstor_proqu%3E40864472%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-b8d6356d767f36efba306a72fc074058b55054376c038193842e75b3a21c84793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746767937&rft_id=info:pmid/&rft_jstor_id=40864472&rfr_iscdi=true |